Lupa

Show document Help

A- | A+ | Print
Title:k-Domination ivariants on Kneser graphs
Authors:ID Brešar, Boštjan (Author)
ID Dravec, Tanja (Author)
ID Cornet, María Gracia (Author)
ID Henning, Michael A. (Author)
Files:.pdf AMC_Bresar,Dravec,Cornet,Henning_2025.pdf (375,34 KB)
MD5: 380698D5811748CA25E94683B67A7B07
 
Language:English
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:ZUP - University of Primorska Press
Abstract:In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γ_k(K(n, r)), and the k-tuple total domination number, γ_{t × k}(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γ_k(K(n, r)) ≥ γ_k(K(n + 1, r)) holds for any n ≥ 2(k + r), and γ_{t × k}(K(n, r)) ≥  γ_{t × k}(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γ_k(K(n, r)) = γ_{t × k}(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γ_k(r(k + r) − 1, r) = γ_{t × k}(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs.
Keywords:Kneser graphs, k-domination, k-tuple total domination, 2-packing
Publication status:Published
Publication version:Version of Record
Publication date:24.07.2025
Publisher:Založba Univerze na Primorskem
Year of publishing:2025
Number of pages:16 str.
Numbering:Vol. 25, no. 4, [article no.] P4.02
PID:20.500.12556/RUP-22016 This link opens in a new window
UDC:519.17
eISSN:1855-3974
DOI:https://doi.org/10.26493/1855-3974.3294.7fd This link opens in a new window
Publication date in RUP:22.10.2025
Views:251
Downloads:1
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Založba Univerze na Primorskem
ISSN:1855-3974

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0297
Name:Teorija grafov

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0285
Name:Metrični problemi v grafih in hipergrafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3002
Name:Prirejanja in barvanja povezav v kubičnih grafih

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-4008
Name:Drevesno neodvisnostno število grafov

Funder:Argentinian National Agency for the Promotion of Research
Project number:PICT-2020-03032

Funder:Argentinian National Council for Scientific and Technical Research
Project number:PIP CONICET 1900

Funder:National University of Rosario
Funding programme:80020210300068UR

Funder:South African National Research Foundation
Funding programme:132588

Funder:South African National Research Foundation
Funding programme:129265

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Secondary language

Language:Slovenian
Title:k-dominacijske invariante Kneserjevih grafov
Keywords:Kneserjevi grafi, k-dominacija, k-terna popolna dominacija, 2-pakiranje


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica