| Title: | k-Domination ivariants on Kneser graphs |
|---|
| Authors: | ID Brešar, Boštjan (Author) ID Dravec, Tanja (Author) ID Cornet, María Gracia (Author) ID Henning, Michael A. (Author) |
| Files: | AMC_Bresar,Dravec,Cornet,Henning_2025.pdf (375,34 KB) MD5: 380698D5811748CA25E94683B67A7B07
|
|---|
| Language: | English |
|---|
| Work type: | Article |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | ZUP - University of Primorska Press
|
|---|
| Abstract: | In this follow-up to work of M.G. Cornet and P. Torres from 2023, where the k-tuple domination number and the 2-packing number in Kneser graphs K(n, r) were studied, we are concerned with two variations, the k-domination number, γ_k(K(n, r)), and the k-tuple total domination number,
γ_{t × k}(K(n, r)), of K(n, r). For both invariants we prove monotonicity results by showing that γ_k(K(n, r)) ≥ γ_k(K(n + 1, r)) holds for any n ≥ 2(k + r), and γ_{t × k}(K(n, r)) ≥
γ_{t × k}(K(n + 1, r)) holds for any n ≥ 2r + 1. We prove that γ_k(K(n, r)) = γ_{t × k}(K(n, r)) = k + r when n ≥ r(k + r), and that in this case every γ_(k)-set and γ_(t × k)-set is a clique, while γ_k(r(k + r) − 1, r) = γ_{t × k}(r(k + r) − 1, r) = k + r + 1, for any k ≥ 2. Concerning the 2-packing number, ρ₂(K(n, r)), of K(n, r), we prove the exact values of ρ₂(K(3r − 3, r)) when r ≥ 10, and give sufficient conditions for ρ₂(K(n, r)) to be equal to some small values by imposing bounds on r with respect to n. We also prove a version of monotonicity for the 2-packing number of Kneser graphs. |
|---|
| Keywords: | Kneser graphs, k-domination, k-tuple total domination, 2-packing |
|---|
| Publication status: | Published |
|---|
| Publication version: | Version of Record |
|---|
| Publication date: | 24.07.2025 |
|---|
| Publisher: | Založba Univerze na Primorskem |
|---|
| Year of publishing: | 2025 |
|---|
| Number of pages: | 16 str. |
|---|
| Numbering: | Vol. 25, no. 4, [article no.] P4.02 |
|---|
| PID: | 20.500.12556/RUP-22016  |
|---|
| UDC: | 519.17 |
|---|
| eISSN: | 1855-3974 |
|---|
| DOI: | https://doi.org/10.26493/1855-3974.3294.7fd  |
|---|
| Publication date in RUP: | 22.10.2025 |
|---|
| Views: | 251 |
|---|
| Downloads: | 1 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |