Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1
Authors:
ID
Miklavič, Štefko
(Author)
Files:
http://dx.doi.org/10.1016/j.disc.2005.09.044
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
Let ▫$\Gamma$▫ denote a bipartite ▫$Q$▫-polynomial distance-regular graph with diameter ▫$d \ge 3$▫, valency ▫$k \ge 3$▫ and intersection number ▫$c_2=1$▫. We show that ▫$\Gamma$▫ has a certain equitable partition of its vertex set which involves ▫$4d-4$▫ cells. We use this partition to show that the intersection numbers of ▫$\Gamma$▫ satisfy the following divisibility conditions: (I) ▫$c_{i+1}-1$▫ divides ▫$c_i(c_i-1)$▫ for ▫$2 \le i \le d-1$▫, and (II) ▫$b_{i-1}-1$▫ divides ▫$b_i(b_i-1)$▫ for ▫$1 \le i \le d-1$▫. Using these divisibility conditions we show that ▫$\Gamma$▫ does not exist if ▫$d=4$▫.
Keywords:
mathematics
,
grah theory
,
distance-regular graphs
,
▫$Q$▫-polynomial property
,
equitable partitions
Year of publishing:
2007
Number of pages:
str. 544-553
Numbering:
Vol. 307, iss. 3-5
PID:
20.500.12556/RUP-286
ISSN:
0012-365X
UDC:
519.17
COBISS.SI-ID:
14181465
Publication date in RUP:
15.10.2013
Views:
4644
Downloads:
38
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
Copy citation
Average score:
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Abstract:
Naj bo ▫$\Gamma$▫ dvodelen ▫$Q$▫-polinomski razdaljno regularen graf premera ▫$d \ge 3$▫, stopnje ▫$k \ge 3$▫ in presečnim številom ▫$c_2=1$▫. Pokažemo, da množica vozlišč grafa ▫$\Gamma$▫ premore ekvitabilno particijo, ki vsebuje ▫$4d-4$▫ množic. S pomočjo te ekvitabilne particije doka\emo, da morajo presečna števila grafa ▫$\Gamma$▫ zadoščati naslednjim pogojem: (I) ▫$c_{i+1}-1$▫ deli ▫$c_i(c_i-1)$▫ za ▫$2 \le i \le d-1$▫, (II) ▫$b_{i-1}-1$▫ deli ▫$b_i(b_i-1)$▫ za ▫$1 \le i \le d-1$▫. S pomočjo teh pogojev dokažemo, da graf ▫$\Gamma$▫ ne obstaja, če je ▫$d=4$▫.
Keywords:
matematika
,
teorija grafov
,
razdaljno regularni grafi
,
▫$Q$▫-polinomska lastnost
,
ekvitabilne particije
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back