| Title: | Hamiltonian cycles in Cayley graphs whose order has few prime factors |
|---|
| Authors: | ID Kutnar, Klavdija (Author) ID Marušič, Dragan (Author) ID Morris, D. W. (Author) ID Morris, Joy (Author) ID Šparl, Primož (Author) |
| Files: | RAZ_Kutnar_Klavdija_i2012.pdf (545,91 KB) MD5: D8BCD5F82574FCA2EA06BADDF2D09595
|
|---|
| Language: | English |
|---|
| Work type: | Unknown |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | ZUP - University of Primorska Press
|
|---|
| Abstract: | We prove that if Cay▫$(G; S)$▫ is a connected Cayley graph with ▫$n$▫ vertices, and the prime factorization of ▫$n$▫ is very small, then Cay▫$(G; S)$▫ has a hamiltonian cycle. More precisely, if ▫$p$▫, ▫$q$▫, and ▫$r$▫ are distinct primes, then ▫$n$▫ can be of the form kp with ▫$24 \ne k < 32$▫, or of the form ▫$kpq$▫ with ▫$k \le 5$▫, or of the form ▫$pqr$▫, or of the form ▫$kp^2$▫ with ▫$k \le 4$▫, or of the form ▫$kp^3$▫ with ▫$k \le 2$▫. |
|---|
| Keywords: | graph theory, Cayley graphs, hamiltonian cycles |
|---|
| Year of publishing: | 2012 |
|---|
| Number of pages: | str. 27-71 |
|---|
| Numbering: | Vol. 5, no. 1 |
|---|
| PID: | 20.500.12556/RUP-3760  |
|---|
| UDC: | 519.17 |
|---|
| ISSN on article: | 1855-3966 |
|---|
| COBISS.SI-ID: | 1024371028  |
|---|
| Publication date in RUP: | 15.10.2013 |
|---|
| Views: | 5177 |
|---|
| Downloads: | 129 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |