| Title: | Reflexivity defect of spaces of linear operators |
|---|
| Authors: | ID Bračič, Janko (Author) ID Kuzma, Bojan (Author) |
| Files: | http://dx.doi.org/10.1016/j.laa.2008.07.024
|
|---|
| Language: | English |
|---|
| Work type: | Not categorized |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IAM - Andrej Marušič Institute
|
|---|
| Abstract: | For a finite-dimensional linear subspace ▫{$\mathscr{S}} \subseteq {\mathscr{L}} (V,W)$▫ and a positive integer ▫$k$▫, the ▫$k$▫-reflexivity defect of ▫$\mathscr{S}$▫ is defined by ▫${\mathrm{rd}}_k ({\mathscr{S}}) = \dim({\mathrm{Ref}}_k (\mathscr{S})/\mathscr{S})$▫ where ▫${\mathrm{Ref}}_k$▫ is the ▫$k$▫-reflexive closure of ▫$\mathscr{S}$▫. We study this quantity for two-dimensional spaces of operators and for single generated algebras and their commutants. |
|---|
| Keywords: | mathematics, operator theory, reflexivity defect, reflexivity, two-dimensional space of operators, single generated algebra, commutant |
|---|
| Year of publishing: | 2009 |
|---|
| Number of pages: | str. 344-359 |
|---|
| Numbering: | Vol. 430, iss. 1 |
|---|
| PID: | 20.500.12556/RUP-7728  |
|---|
| ISSN: | 0024-3795 |
|---|
| UDC: | 517.983:512.643 |
|---|
| DOI: | 10.1016/j.laa.2008.07.024  |
|---|
| COBISS.SI-ID: | 14977369  |
|---|
| Publication date in RUP: | 03.04.2017 |
|---|
| Views: | 3292 |
|---|
| Downloads: | 199 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |