| Title: | Maps on self-adjoint operators preserving numerical range of products up to a factor |
|---|
| Authors: | ID He, Kan (Author) ID Hou, Jin Chuan (Author) ID Dolinar, Gregor (Author) ID Kuzma, Bojan (Author) |
| Files: | http://www.actamath.com/Jwk_sxxb_cn/CN/volumn/volumn_1986.shtml
|
|---|
| Language: | Unknown |
|---|
| Work type: | Not categorized |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IAM - Andrej Marušič Institute
|
|---|
| Abstract: | Let ▫$H$▫ be a complex Hilbert space and ▫${mathscr{S}}_a(H)$▫ the space of all self adjoint operators on ▫$H$▫. ▫$Phi colon {mathscr{S}}_a(H) to {mathscr{S}}_a(H)$▫ is a surjective map. For ▫$xi, eta in mathbb{C} setminus {1}$▫, then ▫$Phi$▫ satisfies that ▫$$W(AB - xi BA) = W(Phi(A)Phi(B) - etaPhi(B)phi(A))$$▫ for all ▫$A,B in {mathscr{S}}_a(H)$▫ if and only if there exists a unitary operator or con-unitary operator ▫$U$▫ such that ▫$Phi(A) = UAU^ast$▫ for all ▫$A in {mathscr{S}}_a(H)$▫ or ▫$Phi(A) = -UAU^ast$▫ for all ▫$A in {mathscr{S}}_a(H)$▫. |
|---|
| Keywords: | matematika, teorija operatorjev, numerični zaklad, ohranjevalci |
|---|
| Year of publishing: | 2011 |
|---|
| Number of pages: | str. 925-932 |
|---|
| Numbering: | Vol. 54, no. 6 |
|---|
| PID: | 20.500.12556/RUP-7742  |
|---|
| ISSN: | 0583-1431 |
|---|
| UDC: | 517.983 |
|---|
| COBISS.SI-ID: | 16397401  |
|---|
| Publication date in RUP: | 03.04.2017 |
|---|
| Views: | 3620 |
|---|
| Downloads: | 46 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |