Lupa

Show document Help

A- | A+ | Print
Title:Vertex-transitive graphs and their arc-types
Authors:ID Conder, Marston D. E. (Author)
ID Pisanski, Tomaž (Author)
ID Žitnik, Arjana (Author)
Files:.pdf RAZ_Conder_Marston_D._E._i2017.pdf (475,17 KB)
MD5: 0190B608AC47F66AC3D1800AA68C2419
 
Language:English
Work type:Unknown
Typology:1.01 - Original Scientific Article
Organization:ZUP - University of Primorska Press
Abstract:Let ▫$X$▫ be a finite vertex-transitive graph of valency ▫$d$▫, and let ▫$A$▫ be the full automorphism group of ▫$X$▫. Then the arc-type of ▫$X$▫ is defined in terms of the sizes of the orbits of the stabiliser ▫$A_v$▫ of a given vertex ▫$v$▫ on the set of arcs incident with ▫$v$▫. Such an orbit is said to be self-paired if it is contained in an orbit ▫$\Delta$▫ of ▫$A$▫ on the set of all arcs of v$X$▫ such that v$\Delta$▫ is closed under arc-reversal. The arc-type of ▫$X$▫ is then the partition of ▫$d$▫ as the sum ▫$n_1 + n_2 + \dots + n_t + (m_1 + m_1) + (m_2 + m_2) + \dots + (m_s + m_s)$▫, where ▫$n_1, n_2, \dots, n_t$▫ are the sizes of the self-paired orbits, and ▫$m_1,m_1, m_2,m_2, \dots, m_s,m_s$▫ are the sizes of the non-self-paired orbits, in descending order. In this paper, we find the arc-types of several families of graphs. Also we show that the arc-type of a Cartesian product of two "relatively prime" graphs is the natural sum of their arc-types. Then using these observations, we show that with the exception of ▫$1+1$▫ and ▫$(1+1)$▫, every partition as defined above is \emph{realisable}, in the sense that there exists at least one vertex-transitive graph with the given partition as its arc-type.
Keywords:symmetry type, vertex-transitive graph, arc-transitive graph, Cayley graph, cartesian product, covering graph
Year of publishing:2017
Number of pages:str. 383-413
Numbering:Vol. 12, no. 2
PID:20.500.12556/RUP-17626 This link opens in a new window
UDC:519.17:512.54
ISSN on article:1855-3966
COBISS.SI-ID:18064217 This link opens in a new window
Publication date in RUP:02.01.2022
Views:1264
Downloads:20
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Ars mathematica contemporanea
Publisher:Društvo matematikov, fizikov in astronomov, Društvo matematikov, fizikov in astronomov, Univerza na Primorskem, Fakulteta za matematiko, naravoslovje in informacijske tehnologije
ISSN:1855-3966
COBISS.SI-ID:239049984 This link opens in a new window

Secondary language

Language:Slovenian
Title:Vozliščno tranzitivni grafi in njihovi ločni tipi
Abstract:Naj bo ▫$X$▫ končen vozliščno-tranzitiven graf valence ▫$d$▫, in naj bo ▫$A$▫ polna grupa avtomorfizmov grafa ▫$X$▫. Potem je ločni tip grafa ▫$X$▫ definiran v smislu velikosti orbit stabilizatorja ▫$A_v$▫ danega vozlišča ▫$v$▫ na množici lokov incidentnih z ▫$v$▫. Za takšno orbito pravimo, da je sebi-prirejena, če je vsebovana v orbiti ▫$\Delta$▫ grupe ▫$A$▫ na množici vseh takšnih lokov grafa ▫$X$▫, za katere je orbita ▫$\Delta$▫ zaprta za obračanje lokov. Ločni tip grafa ▫$X$▫ je tedaj razčlenitev števila ▫$d$▫ v vsoto ▫$n_1 + n_2 + \dots + n_t + (m_1 + m_1) + (m_2 + m_2) + \dots + (m_s + m_s)$▫, kjer so ▫$n_1, n_2, \dots, n_t$▫ velikosti sebi-prirejenih orbit, ▫$m_1,m_1, m_2,m_2, \dots, m_s,m_s$▫, ms pa so velikosti sebi-neprirejenih orbit, v padajočem redu. V tem članku najdemo ločne tipe več družin grafov. Pokažemo tudi, da je ločni tip kartezičnega produkta dveh "tujih si" grafov naravna vsota njunih ločnih tipov. Potem na podlagi teh opažanj pokažemo, da je, z izjemo ▫$1+1$▫ in ▫$(1+1)$▫, vsaka particija, kot je definirana zgoraj, realizabilna, v tem smislu, da obstaja vsaj en vozliščno-tranzitiven graf z dano razčlenitvijo kot svojim ločnim tipom.
Keywords:tip simetrije, vozliščno tranzitiven graf, ločno trazitiven graf, Cayleyjev graf, kartezični produkt, krovni graf


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica