Naslov: | Vertex-transitive graphs and their arc-types |
---|
Avtorji: | ID Conder, Marston D. E. (Avtor) ID Pisanski, Tomaž (Avtor) ID Žitnik, Arjana (Avtor) |
Datoteke: | RAZ_Conder_Marston_D._E._i2017.pdf (475,17 KB) MD5: 0190B608AC47F66AC3D1800AA68C2419
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Neznano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | ZUP - Založba Univerze na Primorskem
|
---|
Opis: | Let ▫$X$▫ be a finite vertex-transitive graph of valency ▫$d$▫, and let ▫$A$▫ be the full automorphism group of ▫$X$▫. Then the arc-type of ▫$X$▫ is defined in terms of the sizes of the orbits of the stabiliser ▫$A_v$▫ of a given vertex ▫$v$▫ on the set of arcs incident with ▫$v$▫. Such an orbit is said to be self-paired if it is contained in an orbit ▫$\Delta$▫ of ▫$A$▫ on the set of all arcs of v$X$▫ such that v$\Delta$▫ is closed under arc-reversal. The arc-type of ▫$X$▫ is then the partition of ▫$d$▫ as the sum ▫$n_1 + n_2 + \dots + n_t + (m_1 + m_1) + (m_2 + m_2) + \dots + (m_s + m_s)$▫, where ▫$n_1, n_2, \dots, n_t$▫ are the sizes of the self-paired orbits, and ▫$m_1,m_1, m_2,m_2, \dots, m_s,m_s$▫ are the sizes of the non-self-paired orbits, in descending order. In this paper, we find the arc-types of several families of graphs. Also we show that the arc-type of a Cartesian product of two "relatively prime" graphs is the natural sum of their arc-types. Then using these observations, we show that with the exception of ▫$1+1$▫ and ▫$(1+1)$▫, every partition as defined above is \emph{realisable}, in the sense that there exists at least one vertex-transitive graph with the given partition as its arc-type. |
---|
Ključne besede: | symmetry type, vertex-transitive graph, arc-transitive graph, Cayley graph, cartesian product, covering graph |
---|
Leto izida: | 2017 |
---|
Št. strani: | str. 383-413 |
---|
Številčenje: | Vol. 12, no. 2 |
---|
PID: | 20.500.12556/RUP-17626 |
---|
UDK: | 519.17:512.54 |
---|
ISSN pri članku: | 1855-3966 |
---|
COBISS.SI-ID: | 18064217 |
---|
Datum objave v RUP: | 02.01.2022 |
---|
Število ogledov: | 1266 |
---|
Število prenosov: | 20 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |