Lupa

Show document Help

A- | A+ | Print
Title:Ob otobraženijah, sohranjajuščih immananty
Authors:ID Kuzma, Bojan (Author)
Files:URL http://mi.mathnet.ru/rus/fpm/v13/i4/p113
 
Language:Russian
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:V članku študiramo preslikave, ki transformirajo eno imananto matričnih snopov v drugo. Vnaprej ne predpostavimo niti surjektivnosti, niti linearnosti preslikav. Predpostavimo zgolj šibko linearnost v obliki identitete ▫$d_chi (Phi(A) + lambda Phi(B)) = d_{chi'}(A+lambda B)$▫. Pokažemo, da zgolj ta identiteta implicira avtomatično linearnost in bijektivnost preslikave ▫$Phi$▫.
Keywords:matematika, linearna algebra, teorija matrik, imanante, ohranjevalci
Year of publishing:2007
Number of pages:str. 113-120
Numbering:Tom. 13, vyp. 4
PID:20.500.12556/RUP-3551 This link opens in a new window
ISSN:1560-5159
UDC:512.643
COBISS.SI-ID:14661977 This link opens in a new window
Publication date in RUP:15.10.2013
Views:3822
Downloads:91
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:Slovenian
Abstract:V članku študiramo preslikave, ki transformirajo eno imananto matričnih snopov v drugo. Vnaprej ne predpostavimo niti surjektivnosti, niti linearnosti preslikav. Predpostavimo zgolj šibko linearnost v obliki identitete ▫$d_\chi (\Phi(A) + \lambda \Phi(B)) = d_{\chi'}(A+\lambda B)$▫. Pokažemo, da zgolj ta identiteta implicira avtomatično linearnost in bijektivnost preslikave ▫$\Phi$▫.We study the maps that transform one immanant into another. No surjectivity orlinearity is imposed; the rudiments of the former are weakly embedded into the functional equation via ▫$d_\chi (\Phi(A) + \lambda \Phi(B)) = d_{\chi'}(A+\lambda B)$▫. We show that this property alone implies that ▫$\Phi$▫ is linear and bijective.
Keywords:matematika, linearna algebra, teorija matrik, imanante, ohranjevalci, mathematics, linear algebra, matrix theory, immanants, preservers


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica