Title: | Hamiltonian cycles in Cayley graphs whose order has few prime factors |
---|
Authors: | ID Kutnar, Klavdija (Author) ID Marušič, Dragan (Author) ID Morris, D. W. (Author) ID Morris, Joy (Author) ID Šparl, Primož (Author) |
Files: | RAZ_Kutnar_Klavdija_i2012.pdf (545,91 KB) MD5: D8BCD5F82574FCA2EA06BADDF2D09595
|
---|
Language: | English |
---|
Work type: | Unknown |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | ZUP - University of Primorska Press
|
---|
Abstract: | We prove that if Cay▫$(G; S)$▫ is a connected Cayley graph with ▫$n$▫ vertices, and the prime factorization of ▫$n$▫ is very small, then Cay▫$(G; S)$▫ has a hamiltonian cycle. More precisely, if ▫$p$▫, ▫$q$▫, and ▫$r$▫ are distinct primes, then ▫$n$▫ can be of the form kp with ▫$24 \ne k < 32$▫, or of the form ▫$kpq$▫ with ▫$k \le 5$▫, or of the form ▫$pqr$▫, or of the form ▫$kp^2$▫ with ▫$k \le 4$▫, or of the form ▫$kp^3$▫ with ▫$k \le 2$▫. |
---|
Keywords: | graph theory, Cayley graphs, hamiltonian cycles |
---|
Year of publishing: | 2012 |
---|
Number of pages: | str. 27-71 |
---|
Numbering: | Vol. 5, no. 1 |
---|
PID: | 20.500.12556/RUP-3760 |
---|
UDC: | 519.17 |
---|
ISSN on article: | 1855-3966 |
---|
COBISS.SI-ID: | 1024371028 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 4038 |
---|
Downloads: | 128 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |