Title: | Rank-permutable additive mappings |
---|
Authors: | ID Alieva, Anna A. (Author) ID Guterman, Aleksandr Èmilevič (Author) ID Kuzma, Bojan (Author) |
Files: | http://dx.doi.org/10.1016/j.laa.2005.11.003
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions. |
---|
Keywords: | mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers |
---|
Year of publishing: | 2006 |
---|
Number of pages: | str. 607-616 |
---|
Numbering: | Vol. 414, iss. 2-3 |
---|
PID: | 20.500.12556/RUP-621 |
---|
ISSN: | 0024-3795 |
---|
UDC: | 511.643 |
---|
COBISS.SI-ID: | 13949273 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 4319 |
---|
Downloads: | 90 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |