Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Rank-permutable additive mappings
Avtorji:ID Alieva, Anna A. (Avtor)
ID Guterman, Aleksandr Èmilevič (Avtor)
ID Kuzma, Bojan (Avtor)
Datoteke:URL http://dx.doi.org/10.1016/j.laa.2005.11.003
 
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:IAM - Inštitut Andrej Marušič
Opis:Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions.
Ključne besede:mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers
Leto izida:2006
Št. strani:str. 607-616
Številčenje:Vol. 414, iss. 2-3
PID:20.500.12556/RUP-621 Povezava se odpre v novem oknu
ISSN:0024-3795
UDK:511.643
COBISS.SI-ID:13949273 Povezava se odpre v novem oknu
Datum objave v RUP:15.10.2013
Število ogledov:4317
Število prenosov:90
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Sekundarni jezik

Jezik:Slovenski jezik
Opis:Bodi ▫$\sigma$▫ netrivialna permutacija na ▫$k$▫ elementih. Klasificiramo vse aditivne bijekcije ▫$T:M_n(F)\to M_n(F)$▫, ki ohranjajo ▫$\sigma$▫-rang permutabilnost na algebri matrik s koeficienti iz komutativnega obsega ▫$F$▫ ničelne karakteristike. Natančneje: Čim urejena ▫$k$▫-terka matrik ▫$(A_1,..,A_k)$▫ ustreza pogoju ▫$\rm{rk}(A_1...A_k) = \rm{rk}(A_{\sigma(1)} ... A_{\sigma(k)})$▫ potem isto velja za preslikano ▫$k$▫-terko ▫$(T(A_1),..,T(A_k))$▫. Če se ▫$\sigma$▫-rang permutabilnost ohranja v obeh smereh, lahko predpostavko o bijektivnosti omilimo.
Ključne besede:matematika, linearna algebra, matrična algebra, aditivni ohranjevalci, rang, permutacija


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici