Show document

A- | A+ | Print
Title:General preservers of quasi-commutativity on self-adjoint operators
Authors:Kuzma, Bojan (Author)
Dolinar, Gregor (Author)
Work type:Not categorized
Tipology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let ▫$H$▫ be a separable Hilbert space and▫ ${\mathcal B}_{sa}(H)▫$ the set of all bounded linear self-adjoint operators. We say that ▫$A, B \in {\mathcal B}_{sa}(H)$▫ quasi-commute if there exists a nonzero ▫$\xi \in \mathbb{C}$▫ suchthat ▫$AB=\xi BA$▫. Bijective maps on ▫${\mathcal B}_{sa}(H)$▫ which preserve quasi-commutativity in both directions are classified.
Keywords:mathematics, linear algebra, general preserver, self-adjoint operator, quasi-commutativity
Year of publishing:2010
Number of pages:str. 567-575
Numbering:Vol. 364, iss. 2
COBISS_ID:15532889 Link is opened in a new window
Categories:Document is not linked to any category.
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
Share:Bookmark and Share

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Title:Splošni ohranjevalci kvazi-komutativnosti na sebi-adjungiranih operatorjih
Abstract:Naj bo ▫$H$▫ separabilen Hilbertov prostor in naj bo ▫${\mathcal B}_{sa}(H)$▫ množica vseh omejenih linearnih sebi-adjungiranih operatorjev. Pravimo, da operatorja ▫$A, B \in {\mathcal B}_{sa}(H)$▫ kvazi-komutirata, če obstaja tak neničelni skalar ▫$\xi \in \mathbb{C}$▫, da je ▫$AB=\xi BA$▫. V članku klasificiramo bijektivne preslikave na ▫${\mathcal B}_{sa}(H)$▫, ki ohranjajo kvazi-komutativnost v obeh smereh.
Keywords:matematika, linearna algebra, splošni ohranjevalci, sebi-adjungiran operator, kvazi-komutativnost


Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
There are no comments!

Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica