Show document

A- | A+ | Print
Title:Linear maps preserving numerical radius of tensor products of matrices
Authors:Fošner, Ajda (Author)
Huang, Zejun (Author)
Li, Chi-Kwong (Author)
Sze, Nung-Sing (Author)
Work type:Not categorized
Tipology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:V članku so karakterizirane linearne preslikave na tenzorskem produktu kompleksnih matrik, ki ohranjajo numerični radij.
Keywords:matematika, teorija matrik, kompleksne matrike, linearni ohranjevalci, numerični rang, numerični radij, tenzorski produkt
Year of publishing:2013
Number of pages:str. 183-189
Numbering:Vol. 407, iss. 2
COBISS_ID:16648025 Link is opened in a new window
Categories:Document is not linked to any category.
Average score:(0 votes)
Your score:Voting is allowed only to logged in users.
Share:Bookmark and Share

Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Abstract:Let ▫$m,n ge 2$▫ be positive integers. Denote by ▫$M_m$▫ the set of ▫$m times m$▫ complex matrices and by ▫$w(X)$▫ the numerical radius of a square matrix ▫$X$▫. Motivated by the study of operations on bipartite systems of quantum states, we show that a linear map ▫$phi colon M_{mn} to M_{mn}$▫ satisfies ▫$$w(phi(Aotimes B)) = w(A otimes B)quad text{for all } A in M_m text{ and } B in M_n$$▫ if and only if there is a unitary matrix ▫$U in M_{mn}$▫ and a complex unit ▫$xi$▫ such that ▫$$phi(A otimes B) = xi U(varphi_1(A) otimes varphi_2(B))U^ast quad text{for all } A in M_m text{ and } B in M_n$$▫ where ▫$varphi_k$▫ is the identity map or the transposition map ▫$X mapsto X_t$▫ for ▫$k = 1,2$▫, and the maps ▫$varphi_1$▫ and ▫$varphi_2$▫ will be of the same type if ▫$m,n ge 3$▫. In particular, if ▫$m,n ge 3$▫, the map corresponds to an evolution of a closed quantum system (under a fixed unitary operator), possibly followed by a transposition. The results are extended to multipartite systems.
Keywords:mathematics, matrix theory, complex matrices, linear preservers, numerical range, numerical radius, tensor product


Leave comment

You have to log in to leave a comment.

Comments (0)
0 - 0 / 0
There are no comments!

Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica