Processing math: 28%
Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
Leonard triples and hypercubes
Authors:
ID
Miklavič, Štefko
(Author)
Files:
http://dx.doi.org/10.1007/s10801-007-0108-x
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
Let
V
denote a vector space over
C
with finite positive dimension. By a Leonard triple on
V
we mean an ordered triple of linear operators on
V
such that for each of these operators there exists a basis of
V
with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let
D
denote a positive integer and let
Q
D
denote the graph of the
D
-dimensional hypercube. Let
X$ denote the vertex set of ▫${\mathcal{Q}}_D
and let
A \in {\mathrm{Mat}}_X ({\mathbb{C}})
denote the adjacency matrix of
{\mathcal{Q}}_D
. Fix
x \in X
and let
A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}})
denote the corresponding dual adjacency matrix. Let
T
denote the subalgebra of
{\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast
. We refer to
T
as the Terwilliger algebra of
{\mathcal{Q}}_D
with respect to
x
. The matrices
A
and
A^\ast
are related by the fact that
2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast
and
2iA^\ast = A^\varepsilon A - AA^\varepsilon
, where
2iA^\varepsilon = AA^\ast - A^\ast A
and
i^2 = -1
. We show that the triple
A
,
A^\ast
,
A^\varepsilon
acts on each irreducible
T
-module as a Leonard triple. We give a detailed description of these Leonard triples.
Keywords:
mathematics
,
graph theory
,
Leonard triple
,
distance-regular graph
,
hypercube
,
Terwilliger algebra
Year of publishing:
2007
Number of pages:
str. 397-424
Numbering:
Vol. 28, no. 3
PID:
20.500.12556/RUP-1597
ISSN:
0925-9899
UDC:
519.17
COBISS.SI-ID:
14624857
Publication date in RUP:
15.10.2013
Views:
6147
Downloads:
125
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MIKLAVIČ, Štefko, 2007, Leonard triples and hypercubes. [online]. 2007. Vol. 28, no. 3, p. 397–424. [Accessed 3 April 2025]. Retrieved from: http://dx.doi.org/10.1007/s10801-007-0108-x
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Dimenzioniranje nosilnih elementov drsnih vrat
Topological optimisation of steering knuckle
Analysis of the grounding system consisting of vertical rods
Design of 1000 l pressurize
Design and analysis of axial-flux permanent synchronous machines
Similar works from other repositories:
Modeliranje vodnih tokov na odlagališču komunalnih odpadkov
Metoda končnih elementov za račun mejne nosilnosti in lokalizirane porušitve ploskovnih konstrukcij
Energy minimizing mountain ascent
Uvedba novega tipa statorja za dvohitrostne elektromotorje v proizvodnjo
Analysis of the new cooling tower in Šoštanj on wind actions
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Keywords:
matematika
,
teorija grafov
,
razdaljno regularni grafi
,
Leonardova trojica
,
hiperkocka
,
Terwilligerjeva algebra
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back