Processing math: 28%
Lupa

Show document Help

A- | A+ | Print
Title:Leonard triples and hypercubes
Authors:ID Miklavič, Štefko (Author)
Files:URL http://dx.doi.org/10.1007/s10801-007-0108-x
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let V denote a vector space over C with finite positive dimension. By a Leonard triple on V we mean an ordered triple of linear operators on V such that for each of these operators there exists a basis of V with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let D denote a positive integer and let QD denote the graph of the D-dimensional hypercube. Let X$ denote the vertex set of ▫${\mathcal{Q}}_D and let A \in {\mathrm{Mat}}_X ({\mathbb{C}}) denote the adjacency matrix of {\mathcal{Q}}_D. Fix x \in X and let A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}}) denote the corresponding dual adjacency matrix. Let T denote the subalgebra of {\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast. We refer to T as the Terwilliger algebra of {\mathcal{Q}}_D with respect to x. The matrices A and A^\ast are related by the fact that 2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast and 2iA^\ast = A^\varepsilon A - AA^\varepsilon, where 2iA^\varepsilon = AA^\ast - A^\ast A and i^2 = -1. We show that the triple A, A^\ast, A^\varepsilon acts on each irreducible T-module as a Leonard triple. We give a detailed description of these Leonard triples.
Keywords:mathematics, graph theory, Leonard triple, distance-regular graph, hypercube, Terwilliger algebra
Year of publishing:2007
Number of pages:str. 397-424
Numbering:Vol. 28, no. 3
PID:20.500.12556/RUP-1597 This link opens in a new window
ISSN:0925-9899
UDC:519.17
COBISS.SI-ID:14624857 This link opens in a new window
Publication date in RUP:15.10.2013
Views:6147
Downloads:125
Metadata:XML DC-XML DC-RDF
:
MIKLAVIČ, Štefko, 2007, Leonard triples and hypercubes. [online]. 2007. Vol. 28, no. 3, p. 397–424. [Accessed 3 April 2025]. Retrieved from: http://dx.doi.org/10.1007/s10801-007-0108-x
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:English
Keywords:matematika, teorija grafov, razdaljno regularni grafi, Leonardova trojica, hiperkocka, Terwilligerjeva algebra


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica