| Title: | On generalized Jordan triple ([alpha], [beta]) [sup] [ast]-derivations and related mappings |
|---|
| Authors: | ID Ali, Shakir (Author) ID Fošner, Ajda (Author) ID Fošner, Maja (Author) ID Khan, Mohammad Salahuddin (Author) |
| Files: | http://dx.doi.org/10.1007/s00009-013-0277-x
|
|---|
| Language: | English |
|---|
| Work type: | Not categorized |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IAM - Andrej Marušič Institute
|
|---|
| Abstract: | Let ▫$R$▫ be a 2-torsion free semiprime ▫$\ast$▫-ring and let ▫$\alpha, \beta$▫ be surjective endomorphisms of ▫$R$▫. The aim of the paper is to show that every generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation on ▫$R$▫ is a generalized Jordan ▫$(\alpha, \beta)^\ast$▫-derivation. This result makes it possible to prove that every generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation on a semisimple ▫$H^\ast$▫-algebra is a generalized Jordan ▫$(\alpha, \beta)^\ast$▫-derivation. Finally, we prove that every Jordan triple left ▫$\alpha^\ast$▫-centralizer on a 2-torsion free semiprime ring is a Jordan left ▫$\alpha^\ast$▫-centralizer. |
|---|
| Keywords: | mathematics, algebra, semiprime ▫$\ast$▫-ring, ▫$H^\ast$▫-algebra, Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation, generalized Jordan triple ▫$(\alpha, \beta)^\ast$▫-derivation, Jordan triple left ▫$\alpha^\ast$▫-centralizer |
|---|
| Year of publishing: | 2013 |
|---|
| Number of pages: | 13 str. |
|---|
| PID: | 20.500.12556/RUP-1697  |
|---|
| ISSN: | 1660-5446 |
|---|
| UDC: | 512.552 |
|---|
| COBISS.SI-ID: | 16660825  |
|---|
| Publication date in RUP: | 15.10.2013 |
|---|
| Views: | 6579 |
|---|
| Downloads: | 90 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |