Processing math: 100%
Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
Jordan [tau]-derivations of locally matrix rings
Authors:
ID
Chuang, Chen-Lian
(Author)
ID
Fošner, Ajda
(Author)
ID
Lee, Tsiu Kwen
(Author)
Files:
http://dx.doi.org/10.1007/s10468-011-9329-8
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
Let
R
be a prime, locally matrix ring of characteristic not 2 and let
Q
m
s
(
R
)
be the maximal symmetric ring of quotients of
R
. Suppose that
δ
:
R
→
Q
m
s
(
R
)
is a Jordan
τ
-derivation, where
τ
is an anti-automorphism of
R
. Then there exists
a
∈
Q
m
s
(
R
)
such that
δ
(
x
)
=
x
a
−
a
τ
(
x
)
for all
x
∈
R
. Let
X
be a Banach space over the field
F
of real or complex numbers and let
B
(
X
)
be the algebra of all bounded linear operators on
X
. We prove that
Q
m
s
(
B
(
X
)
)
=
B
(
X
)
, which provides the viewpoint of ring theory for some results concerning derivations on the algebra
B
(
X
)
. In particular, all Jordan
τ
-derivations of
B
(
X
)
are inner if
dim
F
X
>
1
.
Keywords:
mathematics
,
algebra
,
anti-automorphism
,
locally matrix ring
,
prime ring
,
Jordan homomorphism
,
Jordan
τ
-derivation
,
Banach space
Year of publishing:
2013
Number of pages:
str. 755-763
Numbering:
Vol. 16, iss. 3
PID:
20.500.12556/RUP-2200
ISSN:
1386-923X
UDC:
512.552
COBISS.SI-ID:
16195673
Publication date in RUP:
15.10.2013
Views:
5655
Downloads:
86
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
CHUANG, Chen-Lian, FOŠNER, Ajda and LEE, Tsiu Kwen, 2013, Jordan [tau]-derivations of locally matrix rings. [online]. 2013. Vol. 16, no. 3, p. 755–763. [Accessed 5 April 2025]. Retrieved from: http://dx.doi.org/10.1007/s10468-011-9329-8
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Vključevanje osnov vrtnarjenja v predšolsko obdobje
Predsodki do živali v predšolskem obdobju
Spoznavanje morja v predšolskem obdobju
Spoznavanje vremena in vremenskih pojavov v predšolskem obdobju s pomočjo izkustvenega učenja
Spoznavanje pojma svetlobe v predšolskem obdobju
Similar works from other repositories:
Preschool children's perceptions of the conditions and sources needed for the survival of organisms
Developing technical correct handling of pre-school children with toys
Exploring stream animals in the preschool period
Preschool Children Duties
The project in technology area: from woods to a footstool
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Abstract:
Naj bo
R
lokalno matrični prakolobar s karakteristiko različno od 2 in
Q
m
s
(
R
)
maksimalni simetrični kolobar kvocientov kolobarja
R
. Naj bo
δ
:
R
→
Q
m
s
(
R
)
jordansko
τ
-odvajanje, kjer je
τ
antiavtomorfizem kolobarja
R
. Potem obstaja tak
a
∈
Q
m
s
(
R
)
, da je
δ
(
x
)
=
x
a
−
a
τ
(
x
)
za vse
x
∈
R
. Naj bo
X
Banachov prostor nad kompleksnim ali realnim poljem
F
in
B
(
X
)
algebra omejenih linearnih operatorjev na
X
. V članku je dokazano, da je
Q
m
s
(
B
(
X
)
)
=
B
(
X
)
.
Keywords:
matematika
,
algebra
,
antiavtomorfizem
,
lokalno matrični kolobar
,
prakolobar
,
jordanski homomorfizem
,
jordansko
τ
-odvajanje
,
Banachov prostor
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back