Lupa

Show document Help

A- | A+ | Print
Title:Jordan [tau]-derivations of locally matrix rings
Authors:ID Chuang, Chen-Lian (Author)
ID Fošner, Ajda (Author)
ID Lee, Tsiu Kwen (Author)
Files:URL http://dx.doi.org/10.1007/s10468-011-9329-8
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫.
Keywords:mathematics, algebra, anti-automorphism, locally matrix ring, prime ring, Jordan homomorphism, Jordan ▫$\tau$▫-derivation, Banach space
Year of publishing:2013
Number of pages:str. 755-763
Numbering:Vol. 16, iss. 3
PID:20.500.12556/RUP-2200 This link opens in a new window
ISSN:1386-923X
UDC:512.552
COBISS.SI-ID:16195673 This link opens in a new window
Publication date in RUP:15.10.2013
Views:4952
Downloads:85
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:Slovenian
Abstract:Naj bo ▫$R$▫ lokalno matrični prakolobar s karakteristiko različno od 2 in ▫$Q_{ms}(R)$▫ maksimalni simetrični kolobar kvocientov kolobarja ▫$R$▫. Naj bo ▫$\delta \colon R \to Q_{ms}(R)$▫ jordansko ▫$\tau$▫-odvajanje, kjer je ▫$\tau$▫ antiavtomorfizem kolobarja ▫$R$▫. Potem obstaja tak ▫$a \in Q_{ms}(R)$▫, da je ▫$\delta(x) = xa - a\tau(x)$▫ za vse ▫$x \in R$▫. Naj bo ▫$X$▫ Banachov prostor nad kompleksnim ali realnim poljem ▫$\mathbb{F}$▫ in ▫$\mathcal{B}(X)$▫ algebra omejenih linearnih operatorjev na ▫$X$▫. V članku je dokazano, da je ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫.
Keywords:matematika, algebra, antiavtomorfizem, lokalno matrični kolobar, prakolobar, jordanski homomorfizem, jordansko ▫$\tau$▫-odvajanje, Banachov prostor


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica