Title: | Jordan [tau]-derivations of locally matrix rings |
---|
Authors: | ID Chuang, Chen-Lian (Author) ID Fošner, Ajda (Author) ID Lee, Tsiu Kwen (Author) |
Files: | http://dx.doi.org/10.1007/s10468-011-9329-8
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Typology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute
|
---|
Abstract: | Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫. |
---|
Keywords: | mathematics, algebra, anti-automorphism, locally matrix ring, prime ring, Jordan homomorphism, Jordan ▫$\tau$▫-derivation, Banach space |
---|
Year of publishing: | 2013 |
---|
Number of pages: | str. 755-763 |
---|
Numbering: | Vol. 16, iss. 3 |
---|
PID: | 20.500.12556/RUP-2200 |
---|
ISSN: | 1386-923X |
---|
UDC: | 512.552 |
---|
COBISS.SI-ID: | 16195673 |
---|
Publication date in RUP: | 15.10.2013 |
---|
Views: | 4952 |
---|
Downloads: | 85 |
---|
Metadata: | |
---|
:
|
Copy citation |
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only for logged in users. |
---|
Share: | |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |