Lupa

Show document Help

A- | A+ | Print
Title:A Hilton–Milner theorem for exterior algebras
Authors:ID Bulavka, Denys (Author)
ID Gandini, Francesca (Author)
ID Woodroofe, Russell Stephen (Author)
Files:.pdf RAZ_Bulavka_Denys_2025.pdf (246,00 KB)
MD5: E0DF93201AD5FAFF33CA5E3309A60063
 
URL https://londmathsoc.onlinelibrary.wiley.com/doi/10.1112/tlm3.70022
 
Language:English
Work type:Article
Typology:1.01 - Original Scientific Article
Organization:FAMNIT - Faculty of Mathematics, Science and Information Technologies
Abstract:Recent work of Scott and Wilmer and of Woodroofe extends the Erdős–Ko–Rado theorem from set systems to subspaces of k-forms in an exterior algebra. We prove an extension of the Hilton–Milner theorem to the exterior algebra setting, answering in a strong way a question asked by these authors.
Keywords:Hilton-Milner, exterior algebra, intersecting set system
Publication version:Version of Record
Publication date:17.12.2025
Year of publishing:2025
Number of pages:str. 1-16
Numbering:Vol. 12, iss. 1, [article no.] e70022
PID:20.500.12556/RUP-22239 This link opens in a new window
UDC:51
ISSN on article:2052-4986
DOI:10.1112/tlm3.70022 This link opens in a new window
COBISS.SI-ID:261967107 This link opens in a new window
Publication date in RUP:18.12.2025
Views:152
Downloads:7
Metadata:XML DC-XML DC-RDF
:
Copy citation
  
Average score:(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Record is a part of a journal

Title:Transactions of the London Mathematical Society
Shortened title:Trans. Lond. Math. Soc.
Publisher:Oxford University Press
ISSN:2052-4986
COBISS.SI-ID:523420953 This link opens in a new window

Document is financed by a project

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:N1-0160-2020
Name:Topološka in algebraična kombinatorika

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-3003-2021
Name:Grupe, poseti, in kompleksi

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:P1-0285-2015
Name:Algebra, diskretna matematika, verjetnostni račun in teorija iger

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-9108-2018
Name:Polregularni elementi v 2-zaprtjih rešljivih grup

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-2451-2020
Name:Simetrija na grafih preko rigidnih celic

Funder:ARIS - Slovenian Research and Innovation Agency
Project number:J1-50000-2023
Name:Hamiltonski cikli z rotacijsko simetrijo v povezanih točkovno tranzitivnih grafih

Licences

License:CC BY 4.0, Creative Commons Attribution 4.0 International
Link:http://creativecommons.org/licenses/by/4.0/
Description:This is the standard Creative Commons license that gives others maximum freedom to do what they want with the work as long as they credit the author.

Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica