Loading [MathJax]/jax/output/HTML-CSS/jax.js
Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
On 2-fold covers of graphs
Authors:
ID
Feng, Yan-Quan
(Author)
ID
Kutnar, Klavdija
(Author)
ID
Malnič, Aleksander
(Author)
ID
Marušič, Dragan
(Author)
Files:
http://dx.doi.org/10.1016/j.jctb.2007.07.001
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
A regular covering projection
℘
:
˜
X
→
X
of connected graphs is
G
-admissible if
G
lifts along
℘
. Denote by
˜
G
the lifted group, and let CT
(
℘
)
be the group of covering transformations. The projection is called
G
-split whenever the extension ▫{
\mathrm{CT}}(\wp) \to \tilde{G} \to G
▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that
G
is transitive on
X
, a
G
-split cover is said to be
G
-split-transitive if all complements
˜
G
≅
G
of CT
(
℘
)
within
˜
G
are transitive on
˜
X
; it is said to be
G
-split-sectional whenever for each complement
˜
G
there exists a
˜
G
-invariant section of
℘
; and it is called
G
-split-mixed otherwise. It is shown, when
G
is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no
G
-split-transitive 2-covers exist) when
G
is 1-regular or 4-regular. In all other cases, that is, if
G
is
s
-regular,
s
=
2
,
3
or
5
, a necessary and sufficient condition for the existence of a transitive complement
˜
G
is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form
A
12
k
+
10
is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group
G
has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed.
Keywords:
graph theory
,
graphs
,
cubic graphs
,
symmetric graphs
,
s
-regular group
,
regular covering projection
Year of publishing:
2008
Number of pages:
str. 324-341
Numbering:
Vol. 98, no. 2
PID:
20.500.12556/RUP-2798
ISSN:
0095-8956
UDC:
519.17
COBISS.SI-ID:
2524887
Publication date in RUP:
15.10.2013
Views:
4744
Downloads:
36
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
FENG, Yan-Quan, KUTNAR, Klavdija, MALNIČ, Aleksander and MARUŠIČ, Dragan, 2008, On 2-fold covers of graphs. [online]. 2008. Vol. 98, no. 2, p. 324–341. [Accessed 22 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.jctb.2007.07.001
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Vključevanje osnov vrtnarjenja v predšolsko obdobje
Predsodki do živali v predšolskem obdobju
Spoznavanje morja v predšolskem obdobju
Spoznavanje vremena in vremenskih pojavov v predšolskem obdobju s pomočjo izkustvenega učenja
Spoznavanje pojma svetlobe v predšolskem obdobju
Similar works from other repositories:
Predstave predšolskih otrok o pogojih in virih za preživetje organizmov
Raziskovanje živali v potoku v predšolskem obdobju
Razvijanje tehnično pravilnega ravnanja z igračo pri predšolskih otrocih
Dolžnosti otrok v predšolskem obdobju
Projekt v tehničnem kotičku
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
English
Keywords:
teorija grafov
,
grafi
,
kubični grafi
,
simetrični grafi
,
s
-regularna grupa
,
regularna krovna projekcija
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back