Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1
Authors:
ID
Miklavič, Štefko
(Author)
Files:
http://dx.doi.org/10.1016/j.disc.2005.09.044
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
Let
Γ
denote a bipartite
Q
-polynomial distance-regular graph with diameter
d
≥
3
, valency
k
≥
3
and intersection number
c
2
=
1
. We show that
Γ
has a certain equitable partition of its vertex set which involves
4
d
−
4
cells. We use this partition to show that the intersection numbers of
Γ
satisfy the following divisibility conditions: (I)
c
i
+
1
−
1
divides
c
i
(
c
i
−
1
)
for
2
≤
i
≤
d
−
1
, and (II)
b
i
−
1
−
1
divides
b
i
(
b
i
−
1
)
for
1
≤
i
≤
d
−
1
. Using these divisibility conditions we show that
Γ
does not exist if
d
=
4
.
Keywords:
mathematics
,
grah theory
,
distance-regular graphs
,
Q
-polynomial property
,
equitable partitions
Year of publishing:
2007
Number of pages:
str. 544-553
Numbering:
Vol. 307, iss. 3-5
PID:
20.500.12556/RUP-286
ISSN:
0012-365X
UDC:
519.17
COBISS.SI-ID:
14181465
Publication date in RUP:
15.10.2013
Views:
5225
Downloads:
39
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MIKLAVIČ, Štefko, 2007, On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1. [online]. 2007. Vol. 307, no. 3–5, p. 544–553. [Accessed 1 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.disc.2005.09.044
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
No similar works found
Similar works from other repositories:
Distance education of science and technology during the Covid-19 epidemic
Distance education during the covid-19 epidemic in Slovenia
The experience of pregnancy, birth and early parenthood during the COVID-19 epidemic in Slovenia
Homelessness During the Covid – 19 Epidemic
Physical/sport activity of 2nd triad students during distance learning at the time of the SARS-CoV-2 epidemic (COVID-19)
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Abstract:
Naj bo
Γ
dvodelen
Q
-polinomski razdaljno regularen graf premera
d
≥
3
, stopnje
k
≥
3
in presečnim številom
c
2
=
1
. Pokažemo, da množica vozlišč grafa
Γ
premore ekvitabilno particijo, ki vsebuje
4
d
−
4
množic. S pomočjo te ekvitabilne particije doka\emo, da morajo presečna števila grafa
Γ
zadoščati naslednjim pogojem: (I)
c
i
+
1
−
1
deli
c
i
(
c
i
−
1
)
za
2
≤
i
≤
d
−
1
, (II)
b
i
−
1
−
1
deli
b
i
(
b
i
−
1
)
za
1
≤
i
≤
d
−
1
. S pomočjo teh pogojev dokažemo, da graf
Γ
ne obstaja, če je
d
=
4
.
Keywords:
matematika
,
teorija grafov
,
razdaljno regularni grafi
,
Q
-polinomska lastnost
,
ekvitabilne particije
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back