Your browser does not allow JavaScript!
JavaScript is necessary for the proper functioning of this website. Please enable JavaScript or use a modern browser.
SLO
Login
Search
Browsing
Upload document
Statistics
RUP
FAMNIT - Faculty of Mathematics, Science and Information Technologies
FHŠ - Faculty of Humanities
FM - Faculty of Management
FTŠ Turistica - Turistica – College of Tourism Portorož
FVZ - Faculty of Health Sciences
IAM - Andrej Marušič Institute
PEF - Faculty of Education
UPR - University of Primorska
ZUP - University of Primorska Press
COBISS
University of Primorska, University Library - all departments
First page
/
Show document
Show document
A-
|
A+
|
Print
Title:
On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1
Authors:
ID
Miklavič, Štefko
(Author)
Files:
http://dx.doi.org/10.1016/j.disc.2005.09.044
Language:
English
Work type:
Not categorized
Typology:
1.01 - Original Scientific Article
Organization:
IAM - Andrej Marušič Institute
Abstract:
Let
Γ
denote a bipartite
Q
-polynomial distance-regular graph with diameter
d
≥
3
, valency
k
≥
3
and intersection number
c
2
=
1
. We show that
Γ
has a certain equitable partition of its vertex set which involves
4
d
−
4
cells. We use this partition to show that the intersection numbers of
Γ
satisfy the following divisibility conditions: (I)
c
i
+
1
−
1
divides
c
i
(
c
i
−
1
)
for
2
≤
i
≤
d
−
1
, and (II)
b
i
−
1
−
1
divides
b
i
(
b
i
−
1
)
for
1
≤
i
≤
d
−
1
. Using these divisibility conditions we show that
Γ
does not exist if
d
=
4
.
Keywords:
mathematics
,
grah theory
,
distance-regular graphs
,
Q
-polynomial property
,
equitable partitions
Year of publishing:
2007
Number of pages:
str. 544-553
Numbering:
Vol. 307, iss. 3-5
PID:
20.500.12556/RUP-286
ISSN:
0012-365X
UDC:
519.17
COBISS.SI-ID:
14181465
Publication date in RUP:
15.10.2013
Views:
5240
Downloads:
39
Metadata:
Cite this work
Plain text
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MIKLAVIČ, Štefko, 2007, On bipartite Q-polynomial distance-regular graphs with c [sub] 2 [equal] 1. [online]. 2007. Vol. 307, no. 3–5, p. 544–553. [Accessed 1 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.disc.2005.09.044
Copy citation
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:
Voting is allowed only for
logged in
users.
Share:
Similar works from our repository:
Interface-controlled growth of organic semiconductors on graphene
Photo-excitation energy influence on the photoconductivity of organic semiconductors
The morphology dependence on growth parameters in nanostructured semiconductors
Molecular alignment on graphene surface determines transport properties of graphene/organic semiconductor transistors
Graphene-induced enhancement of n-type mobility in perylenediimide thin films
Similar works from other repositories:
Antibiotic resistance, virulence factors, phenotyping, and genotyping of E. coli isolated from the feces of healthy subjects
Escherichia coli bacteriocins
Escherichia coli isolated from cases of colibacillosis in Russian poultry farms (Perm Krai)
Biosecurity for highly pathogenic avian influenza
Antimicrobial susceptibility and characterization of extended-spectrum β-lactamase-producig Escherichia coli isolated from stools of primary healthcare patients in Ethiopia
Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.
Secondary language
Language:
Slovenian
Abstract:
Naj bo
Γ
dvodelen
Q
-polinomski razdaljno regularen graf premera
d
≥
3
, stopnje
k
≥
3
in presečnim številom
c
2
=
1
. Pokažemo, da množica vozlišč grafa
Γ
premore ekvitabilno particijo, ki vsebuje
4
d
−
4
množic. S pomočjo te ekvitabilne particije doka\emo, da morajo presečna števila grafa
Γ
zadoščati naslednjim pogojem: (I)
c
i
+
1
−
1
deli
c
i
(
c
i
−
1
)
za
2
≤
i
≤
d
−
1
, (II)
b
i
−
1
−
1
deli
b
i
(
b
i
−
1
)
za
1
≤
i
≤
d
−
1
. S pomočjo teh pogojev dokažemo, da graf
Γ
ne obstaja, če je
d
=
4
.
Keywords:
matematika
,
teorija grafov
,
razdaljno regularni grafi
,
Q
-polinomska lastnost
,
ekvitabilne particije
Comments
Leave comment
You must
log in
to leave a comment.
Comments (0)
0 - 0 / 0
There are no comments!
Back