Title: | Rank-permutable additive mappings |
---|
Authors: | Alieva, Anna A. (Author) Guterman, Aleksandr Èmilevič (Author) Kuzma, Bojan (Author) |
---|
Files: | http://dx.doi.org/10.1016/j.laa.2005.11.003
|
---|
Language: | English |
---|
Work type: | Not categorized |
---|
Tipology: | 1.01 - Original Scientific Article |
---|
Organization: | IAM - Andrej Marušič Institute |
---|
Abstract: | Let ▫$\sigma$▫ be a fixed non-identical permutation on ▫$k$▫ elements. Additive bijections ▫$T$▫ on the matrix algebra ▫$M_n(\mathbb{F})$▫ over a field ▫$\mathbb{F}$▫ of characteristic zero, with the property that ▫$\rm{rk} (A_1...A_k) = \rm{rk} (A_{\sigma(1)}...A_{\sigma(k)})$▫ implies the same condition on the ▫$T$▫ images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions. |
---|
Keywords: | mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers |
---|
Year of publishing: | 2006 |
---|
Number of pages: | str. 607-616 |
---|
Numbering: | Vol. 414, iss. 2-3 |
---|
ISSN: | 0024-3795 |
---|
UDC: | 511.643 |
---|
COBISS_ID: | 13949273  |
---|
Views: | 2632 |
---|
Downloads: | 85 |
---|
Metadata: |  |
---|
Categories: | Document is not linked to any category. |
---|
:
|
|
---|
| | | Average score: | (0 votes) |
---|
Your score: | Voting is allowed only to logged in users. |
---|
Share: |  |
---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |