Lupa

Show document Help

A- | A+ | Print
Title:Rank-permutable additive mappings
Authors:ID Alieva, Anna A. (Author)
ID Guterman, Aleksandr Èmilevič (Author)
ID Kuzma, Bojan (Author)
Files:URL http://dx.doi.org/10.1016/j.laa.2005.11.003
 
Language:English
Work type:Not categorized
Typology:1.01 - Original Scientific Article
Organization:IAM - Andrej Marušič Institute
Abstract:Let σ be a fixed non-identical permutation on k elements. Additive bijections T on the matrix algebra Mn(F) over a field F of characteristic zero, with the property that rk(A1...Ak)=rk(Aσ(1)...Aσ(k)) implies the same condition on the T images, are characterized. It is also shown that the surjectivity assumption can be relaxed, if this property is preserved in both directions.
Keywords:mathematics, linearna algebra, matrix algebra, rank, permutation, additive preservers
Year of publishing:2006
Number of pages:str. 607-616
Numbering:Vol. 414, iss. 2-3
PID:20.500.12556/RUP-621 This link opens in a new window
ISSN:0024-3795
UDC:511.643
COBISS.SI-ID:13949273 This link opens in a new window
Publication date in RUP:15.10.2013
Views:4924
Downloads:93
Metadata:XML DC-XML DC-RDF
:
ALIEVA, Anna A., GUTERMAN, Aleksandr Èmilevič and KUZMA, Bojan, 2006, Rank-permutable additive mappings. [online]. 2006. Vol. 414, no. 2–3, p. 607–616. [Accessed 13 April 2025]. Retrieved from: http://dx.doi.org/10.1016/j.laa.2005.11.003
Copy citation
  
Average score:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 votes)
Your score:Voting is allowed only for logged in users.
Share:Bookmark and Share


Hover the mouse pointer over a document title to show the abstract or click on the title to get all document metadata.

Secondary language

Language:Slovenian
Abstract:Bodi σ netrivialna permutacija na k elementih. Klasificiramo vse aditivne bijekcije T:Mn(F)Mn(F), ki ohranjajo σ-rang permutabilnost na algebri matrik s koeficienti iz komutativnega obsega F ničelne karakteristike. Natančneje: Čim urejena k-terka matrik (A1,..,Ak) ustreza pogoju rk(A1...Ak)=rk(Aσ(1)...Aσ(k)) potem isto velja za preslikano k-terko (T(A1),..,T(Ak)). Če se σ-rang permutabilnost ohranja v obeh smereh, lahko predpostavko o bijektivnosti omilimo.
Keywords:matematika, linearna algebra, matrična algebra, aditivni ohranjevalci, rang, permutacija


Comments

Leave comment

You must log in to leave a comment.

Comments (0)
0 - 0 / 0
 
There are no comments!

Back
Logos of partners University of Maribor University of Ljubljana University of Primorska University of Nova Gorica