| Title: | Semiregular automorphisms of vertex-transitive graphs of certain valencies |
|---|
| Authors: | ID Dobson, Edward Tauscher (Author) ID Malnič, Aleksander (Author) ID Marušič, Dragan (Author) ID Nowitz, Lewis A. (Author) |
| Files: | http://dx.doi.org/10.1016/j.jctb.2006.06.004
|
|---|
| Language: | English |
|---|
| Work type: | Not categorized |
|---|
| Typology: | 1.01 - Original Scientific Article |
|---|
| Organization: | IAM - Andrej Marušič Institute
|
|---|
| Abstract: | It is shown that a vertex-transitive graph of valency ▫$p+1$▫, ▫$p$▫ a prime, admitting a transitive action of a ▫$\{2,p\}$▫-group, has a non-identity semiregular automorphism. As a consequence, it is proved that a quartic vertex-transitive graph has a non-identity semiregular automorphism, thus giving a partial affirmative answer to the conjecture that all vertex-transitive graphs have such an automorphism and, more generally, that all 2-closed transitive permutation groups contain such an element (see [D. Marušic, On vertex symmetric digraphs, Discrete Math. 36 (1981) 69-81; P.J. Cameron (Ed.), Problems from the Fifteenth British Combinatorial Conference, Discrete Math. 167/168 (1997) 605-615]). |
|---|
| Keywords: | mathematics, graph theory, transitive permutation group, 2-closed group, semiregular automorphism, vertex-transitive graph |
|---|
| Year of publishing: | 2007 |
|---|
| Number of pages: | str. 371-380 |
|---|
| Numbering: | Vol. 97, iss. 3 |
|---|
| PID: | 20.500.12556/RUP-7722  |
|---|
| ISSN: | 0095-8956 |
|---|
| UDC: | 519.17:512.54 |
|---|
| COBISS.SI-ID: | 14287961  |
|---|
| Publication date in RUP: | 03.04.2017 |
|---|
| Views: | 3909 |
|---|
| Downloads: | 103 |
|---|
| Metadata: |  |
|---|
|
:
|
Copy citation |
|---|
| | | | Average score: | (0 votes) |
|---|
| Your score: | Voting is allowed only for logged in users. |
|---|
| Share: |  |
|---|
Hover the mouse pointer over a document title to show the abstract or click
on the title to get all document metadata. |