Naslov: Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0 Miklavič, Štefko (Avtor) http://dx.doi.org/10.1016/j.ejc.2008.02.001 Angleški jezik Delo ni kategorizirano 1.01 - Izvirni znanstveni članek IAM - Inštitut Andrej Marušič Let ▫$\Gamma$▫ denote a ▫$Q$▫-polynomial distance-regular graph with diameter ▫$D \ge 3$▫ and intersection numbers ▫$a_1=0$▫, ▫$a_2 \ne 0$▫. Let ▫$X$▫ denote the vertex set of ▫$\Gamma$▫ and let ▫$A \in {\mathrm{Mat}}_X ({\mathbb{C}})$▫ denote the adjacency matrix of ▫$\Gamma$▫. Fix ▫$x \in X$▫ and let denote $A^\ast \in {\mathrm{Mat}}_X ({\mathbb{C}})$ the corresponding dual adjacency matrix. Let ▫$T$▫ denote the subalgebra of ▫$A{\mathrm{Mat}}_X ({\mathbb{C}})$▫ generated by ▫$A$▫, ▫$A^\ast$▫. We call ▫$T$▫ the Terwilliger algebra of ▫$\Gamma$▫ with respect to ▫$x$▫. We show that up to isomorphism there exists a unique irreducible ▫$T$▫-module ▫$W$▫ with endpoint 1. We show that ▫$W$▫ has dimension ▫$2D-2$▫. We display a basis for ▫$W$▫ which consists of eigenvectors for ▫$A^\ast$▫. We display the action of ▫$A$▫ on this basis. We show that ▫$W$▫ appears in the standard module of ▫$\Gamma$▫ with multiplicity ▫$k-1$▫, where ▫$k$▫ is the valency of ▫$\Gamma$▫. mathematics, graph theory, adjacency matrix, distance-regular graph, Terwilliger algebra 2008 str. 192-207 Vol. 30, no. 1 0195-6698 519.17 14627929 1727 9 Gradivo ni uvrščeno v področja.

Skupna ocena: (0 glasov) Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.

Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

## Sekundarni jezik

Jezik: Angleški jezik matematika, teorija grafov, razdaljno regularni grafi, matrika sosednosti, Terwilligerjeva algebra

## Komentarji

Dodaj komentar

izpis_zaKomentiranje

Komentarji (0)
 0 - 0 / 0 Ni komentarjev!

Nazaj