Naslov: | On quartic half-arc-transitive metacirculants |
---|
Avtorji: | ID Marušič, Dragan (Avtor) ID Šparl, Primož (Avtor) |
Datoteke: | http://dx.doi.org/10.1007/s10801-007-0107-y
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | Following Alspach and Parsons, a metacirculant graph is a graph admitting a transitive group generated by two automorphisms ▫$\rho$▫ and ▫$\sigma$▫, where ▫$\rho$▫ is ▫$(m,n)$▫-semiregular for some integers ▫$m \ge 1$▫, ▫$n \ge 2▫$, and where ▫$\sigma$▫ normalizes ▫$\rho$▫, cyclically permuting the orbits of ▫$\rho$▫ in such a way that ▫$\sigma^m$▫ has at least one fixed vertex. A half-arc-transitive graph is a vertex- and edge- but not arc-transitive graph. In this article quartic half-arc-transitive metacirculants are explored and their connection to the so called tightly attached quartic half-arc-transitive graphs is explored. It is shown that there are three essentially different possibilities for a quartic half-arc-transitive metacirculant which is not tightly attached to exist. These graphs are extensively studied and some infinite families of such graphs are constructed. |
---|
Ključne besede: | mathematics, graph theory, metacirculant graph, half-arc-transitive graph, tightly attached, automorphism group |
---|
Leto izida: | 2008 |
---|
Št. strani: | str. 365-395 |
---|
Številčenje: | Vol. 28, no. 3 |
---|
PID: | 20.500.12556/RUP-1311 |
---|
ISSN: | 0925-9899 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 14625113 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 4537 |
---|
Število prenosov: | 133 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |