Naslov: | Divergence zero quaternionic vector fields and Hamming graphs |
---|
Avtorji: | ID Prezelj, Jasna (Avtor) ID Vlacci, Fabio (Avtor) |
Datoteke: | RAZ_Prezelj-Perman_Jasna_i2020.pdf (354,73 KB) MD5: 711CADE5BBBFAC5D2505F9D7D270E791
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Neznano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | ZUP - Založba Univerze na Primorskem
|
---|
Opis: | We give a possible extension of the definition of quaternionic power series, partial derivatives and vector fields in the case of two (and then several) non commutative (quaternionic) variables. In this setting we also investigate the problem of describing zero functions which are not null functions in the formal sense. A connection between an analytic condition and a graph theoretic property of a subgraph of a Hamming graph is shown, namely the condition that polynomial vector field has formal divergence zero is equivalent to connectedness of subgraphs of Hamming graphs ▫$H(d, 2)$▫. We prove that monomials in variables ▫$z$▫ and ▫$w$▫ are always linearly independent as functions only in bidegrees ▫$(p, 0)$▫, ▫$(p, 1)$▫, ▫$(0, q)$▫, ▫$(1, q)$▫ and ▫$(2, 2)$▫. |
---|
Ključne besede: | quaternionic power series, bidegree full functions, Hamming graph, linearly independent quaternionic monomials |
---|
Leto izida: | 2020 |
---|
Št. strani: | str. 189-208 |
---|
Številčenje: | Vol. 19, no. 2 |
---|
PID: | 20.500.12556/RUP-17637 |
---|
UDK: | 517.5:519.17 |
---|
ISSN pri članku: | 1855-3966 |
---|
DOI: | 10.26493/1855-3974.2033.974 |
---|
COBISS.SI-ID: | 42362883 |
---|
Datum objave v RUP: | 03.01.2022 |
---|
Število ogledov: | 1317 |
---|
Število prenosov: | 17 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |