Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Identifying risk factors for sarcopenia using machine learning : insights from multimodal data
Avtorji:ID Urzi, Felicita (Avtor)
ID Šoberl, Domen (Avtor)
ID Caputo, Ornella (Avtor)
ID Narici, Marco Vincenzo (Avtor)
Datoteke:.pdf RAZ_Urzi_Felicita_2025.pdf (965,36 KB)
MD5: 6ED15268095B4433AC17B81F6E42433A
 
URL https://link.springer.com/article/10.1007/s41999-025-01245-5
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
Opis:Purpose This study aims to identify key risk factors for sarcopenia using machine learning models, leveraging anthropomet- ric, biochemical, functional, nutritional, and genetic data. By developing predictive models, the research seeks to improve early detection, enhance diagnostic accuracy, and facilitate personalized interventions for individuals at risk of sarcopenia. Methods We analysed multimodal data from 484 older adults. Two scenarios: Set-a (including SARC–CalF, excluding SARC-F) and Set-b (including SARC-F, excluding SARC–CalF) were applied in a three-stage modeling process with progressively reduced features and optimized predictive performance using machine learning models. Key predictors were ranked using SHAP values, and model performance was evaluated using AUC, accuracy, sensitivity, and specificity. Internal validation and DeLong’s test were applied to assess robustness and statistical differences. Results The most predictive risk factors included functional measures (chair stand, gait speed), nutritional indicators (pro- tein, folate, copper, vitamin B7), clinical conditions (diabetes, comorbidities, low-density lipoprotein (LDL)), and anthro- pometric markers (body mass index (BMI), calf circumference). Genetic features also contributed to risk stratification. The best-performing model Set-b (with screening test SARC-F) achieved an AUC of 0.951 and an accuracy of 93.62%. While SARC–CalF showed higher individual feature importance, the model achieved an AUC of 0.945 and accuracy of 92.2%. Conclusions This study highlights that traditional sarcopenia screening can be enhanced by capturing complex interplay of functional, nutritional, clinical, and genetic factors, offering clinicians a more accurate and tailored tool for early detec- tion and risk stratification. Future research should focus on validating these models in larger, independent, and longitudinal cohorts to assess their predictive utility across diverse populations and over time.
Ključne besede:genetics, nutrition, risk factors, sarcopenia
Datum objave:05.06.2025
Leto izida:2025
Št. strani:str. 1777-1788
Številčenje:Vol. 16, iss. 5
PID:20.500.12556/RUP-21493 Povezava se odpre v novem oknu
UDK:004.8:616.74-007.23
ISSN pri članku:1878-7649
DOI:10.1007/s41999-025-01245-5 Povezava se odpre v novem oknu
COBISS.SI-ID:243486723 Povezava se odpre v novem oknu
Datum objave v RUP:23.07.2025
Število ogledov:548
Število prenosov:12
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:European geriatric medicine
Založnik:Elsevier Masson SAS
ISSN:1878-7649
COBISS.SI-ID:27902169 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:MN-0003-2790
Naslov:Neuromuscular impairment and transcriptomic profile of sarcopenicmuscle in humans

Financer:Drugi - Drug financer ali več financerjev
Številka projekta:ARRS-NOO 630-416/2022-36

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:genetika, prehrana, dejavniki tveganja, sarkopenija


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici