Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Evaluation of changes in prediction modelling in biomedicine using systematic reviews
Avtorji:ID Lusa, Lara (Avtor)
ID Kappenberg, Franziska (Avtor)
ID Collins, Gary S. (Avtor)
ID Schmid, Matthias (Avtor)
ID Sauerbrei, Willi (Avtor)
ID Rahnenführer, Jörg (Avtor)
Datoteke:.pdf RAZ_Lusa_Lara_2025.pdf (6,00 MB)
MD5: 82D153C06FD8600424D4734AC2381E4F
 
URL https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/s12874-025-02605-2
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
Opis:The number of prediction models proposed in the biomedical literature has been growing year on year. In the last few years there has been an increasing attention to the changes occurring in the prediction modeling landscape. It is suggested that machine learning techniques are becoming more popular to develop prediction models to exploit complex data structures, higher-dimensional predictor spaces, very large number of participants, heterogeneous subgroups, with the ability to capture higher-order interactions. We examine the changes in modelling practices by investigating a selection of systematic reviews on prediction models published in the biomedical literature. We selected systematic reviews published between 2020 and 2022 which included at least 50 prediction models. Information was extracted guided by the CHARMS checklist. Time trends were explored using the models published since 2005. We identified 8 reviews, which included 1448 prediction models published in 887 papers. The average number of study participants and outcome events increased considerably between 2015 and 2019 but remained stable afterwards. The number of candidate and final predictors did not noticeably increase over the study period, with a few recent studies using very large numbers of predictors. Internal validation and reporting of discrimination measures became more common, but assessing calibration and carrying out external validation were less common. Information about missing values was not reported in about half of the papers, however the use of imputation methods increased. There was no sign of an increase in using of machine learning methods. Overall, most of the findings were heterogeneous across reviews. Our findings indicate that changes in the prediction modeling landscape in biomedicine are smaller than expected and that poor reporting is still common; adherence to well established best practice recommendations from the traditional biostatistics literature is still needed. For machine learning best practice recommendations are still missing, whereas such recommendations are available in the traditional biostatistics literature, but adherence is still inadequate.
Ključne besede:predictive model, medicine, changes
Verzija publikacije:Objavljena publikacija
Datum objave:01.07.2025
Leto izida:2025
Št. strani:str. 1-19
Številčenje:Vol. 25, [article no.] ǂ167
PID:20.500.12556/RUP-21921 Povezava se odpre v novem oknu
UDK:61:311
ISSN pri članku:1471-2288
DOI:s12874-025-02605-2 Povezava se odpre v novem oknu
COBISS.SI-ID:253005315 Povezava se odpre v novem oknu
Datum objave v RUP:14.10.2025
Število ogledov:266
Število prenosov:7
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:BMC medical research methodology
Skrajšan naslov:BMC Med Res Methodol
Založnik:BioMed Central
ISSN:1471-2288
COBISS.SI-ID:2441236 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:P3-0154-2022
Naslov:Metodologija za analizo podatkov v medicini

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:napovedni modeli, medicina, spremembe


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici