Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:On optimal λ-separable packings in the plane
Avtorji:ID Bezdek, Károly (Avtor)
ID Lángi, Zsolt (Avtor)
Datoteke:.pdf AMC_Bezdek,Langi_2025.pdf (776,44 KB)
MD5: 4AC36DC392D1D9DBA4B561618159FC01
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:ZUP - Založba Univerze na Primorskem
Opis:Let P be a packing of circular disks of radius ρ > 0 in the Euclidean, spherical, or hyperbolic plane. Let 0 ≤ λ ≤ ρ. We say that P is a λ-separable packing of circular disks of radius ρ if the family P′ of disks concentric to the disks of P having radius λ form a totally separable packing, i.e., any two disks of P′ can be separated by a line which is disjoint from the interior of every disk of F′. This notion bridges packings of circular disks of radius ρ (with λ = 0) and totally separable packings of circular disks of radius ρ (with λ = ρ). In this note we extend several theorems on the density, tightness, and contact numbers of disk packings and totally separable disk packings to λ-separable packings of circular disks of radius ρ in the Euclidean, spherical, and hyperbolic plane. In particular, our upper bounds (resp., lower bounds) for the density (resp., tightness) of λ-separable packings of unit disks in the Euclidean plane are sharp for all 0 ≤ λ ≤ 1 with the extremal values achieved by λ-separable lattice packings of unit disks. On the other hand, the bounds of similar results in the spherical and hyperbolic planes are not sharp for all 0 ≤ λ ≤ ρ although they do not seem to be far from the relevant optimal bounds either. The proofs use local analytic and elementary geometry and are based on the so-called refined Molnár decomposition, which is obtained from the underlying Delaunay decomposition and as such might be of independent interest.
Ključne besede:Euclidean, spherical and hyperbolic plane, λ-separable packing, density, tightness, contact number, refined Molnar decomposition
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:12.03.2025
Založnik:Založba Univerze na Primorskem
Leto izida:2025
Št. strani:28 str.
Številčenje:Vol. 25, no. 2, [article no.] P2.04
PID:20.500.12556/RUP-21989 Povezava se odpre v novem oknu
UDK:51
eISSN:1855-3974
DOI:https://doi.org/10.26493/1855-3974.3130.d46 Povezava se odpre v novem oknu
Datum objave v RUP:21.10.2025
Število ogledov:231
Število prenosov:5
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Ars mathematica contemporanea
Založnik:Založba Univerze na Primorskem
ISSN:1855-3974

Gradivo je financirano iz projekta

Financer:Natural Sciences and Engineering Research Council of Canada
Program financ.:Discovery Grant

Financer:EEA - European Environment Agency
Program financ.:ERMiD

Financer:NKFIH
Številka projekta:K147544

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Naslov:Optimalna λ-ločljiva pakiranja v ravnini
Ključne besede:Evklidska, sferična in hiperbolična ravnina, λ-ločljivo pakiranje, gostota, tesnost, kontaktna številka, rafinirana Molnárjeva razstavitev


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici