| Naslov: | On a generalization of median graphs: k-median graphs |
|---|
| Avtorji: | ID Hellmuth, Marc (Avtor) ID Thekkumpadan Puthiyaveedu, Sandhya (Avtor) |
| Datoteke: | AMC_Hellmuth,Thekkumpadan_Puthiyaveedu_2025.pdf (520,78 KB) MD5: 0CD964F4071F89B35B1242D37990B92E
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | ZUP - Založba Univerze na Primorskem
|
|---|
| Opis: | Median graphs are connected graphs in which for all three vertices there is a unique vertex that belongs to shortest paths between each pair of these three vertices. To be more formal, a graph G is a median graph if, for all μ, u, v ∈ V(G), it holds that |I(μ, u) ∩ I(μ, v) ∩ I(u, v)| = 1 where I(x, y) denotes the set of all vertices that lie on shortest paths connecting x and y.
In this paper we are interested in a natural generalization of median graphs, called k-median graphs. A graph G is a k-median graph, if there are k vertices μ1, …, μk ∈ V(G) such that, for all u, v ∈ V(G), it holds that |I(μ_i, u) ∩ I(μ_i, v) ∩ I(u, v)| = 1, 1 ≤ i ≤ k. By definition, every median graph with n vertices is an n-median graph. We provide several characterizations of k-median graphs that, in turn, are used to provide many novel characterizations of median graphs. |
|---|
| Ključne besede: | median graph, convexity, meshed and quadrangle property, modular, interval |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 29.05.2025 |
|---|
| Založnik: | Založba Univerze na Primorskem |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | 27 str. |
|---|
| Številčenje: | Vol. 25, no. 3, [article no.] P3.06 |
|---|
| PID: | 20.500.12556/RUP-22009  |
|---|
| UDK: | 519.17 |
|---|
| eISSN: | 1855-3974 |
|---|
| DOI: | https://doi.org/10.26493/1855-3974.3134.87b  |
|---|
| Datum objave v RUP: | 22.10.2025 |
|---|
| Število ogledov: | 239 |
|---|
| Število prenosov: | 0 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |