| Naslov: | Enhanced precision in axle configuration inference for bridge weigh-in-motion systems using computer vision and deep learning |
|---|
| Avtorji: | ID Šoberl, Domen (Avtor) ID Kalin, Jan (Avtor) ID Anžlin, Andrej (Avtor) ID Kreslin, Maja (Avtor) ID Čopič Pucihar, Klen (Avtor) ID Kljun, Matjaž (Avtor) ID Hekič, Doron (Avtor) ID Žnidarič, Aleš (Avtor) |
| Datoteke: | RAZ_Soberl_Domen_2025.pdf (2,01 MB) MD5: 2308C46C30F8F3E31252B28111E45D0E
https://onlinelibrary.wiley.com/doi/10.1111/mice.70144
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
|
|---|
| Opis: | Heavy goods vehicles (HGVs) have a significant impact on road and bridge infrastructure, with overloaded vehicles accelerating structural deterioration and increasing safety risks. Bridge weigh-in-motion (B-WIM) systems estimate gross vehicle weight (GVW) using strain measurements, but inaccuracies in axle configuration recognition can reduce reliability. This study presents a low-cost computer vision (CV) extension for existing B-WIM installations that verifies strain-inferred axle configurations using traffic camera images and flags GVW estimates as reliable or unreliable. Experiments on a data set of over 30,000 HGV records show that by combining convolutional neural networks with strain-based heuristics, GVW reliability can improve from 96.7% to 99.89%, effectively excluding nearly all erroneous measurements. The approach operates without interrupting ongoing B-WIM operations and can be applied retrospectively to historical data. Limitations include the inability to detect raised axles (RAs), which the method excludes as unreliable. This method provides a practical, high-precision enhancement for structural health monitoring of bridges. |
|---|
| Ključne besede: | B-WIM, computer vision, deep learning |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 16.11.2025 |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | str. 6201-6216 |
|---|
| Številčenje: | Vol. 40, iss. 30 |
|---|
| PID: | 20.500.12556/RUP-22478  |
|---|
| UDK: | 004.8 |
|---|
| ISSN pri članku: | 1467-8667 |
|---|
| DOI: | 10.1111/mice.70144  |
|---|
| COBISS.SI-ID: | 257515523  |
|---|
| Datum objave v RUP: | 16.01.2026 |
|---|
| Število ogledov: | 125 |
|---|
| Število prenosov: | 4 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |