Naslov: | On cryptographically significant mappings over GF(2 [sup] n) |
---|
Avtorji: | ID Pašalić, Enes (Avtor) |
Datoteke: | http://dx.doi.org/10.1007/978-3-540-69499-1_16
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.08 - Objavljeni znanstveni prispevek na konferenci |
---|
Organizacija: | FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
|
---|
Opis: | In this paper we investigate the algebraic properties of important cryptographic primitives called substitution boxes (S-boxes). An S-box is a mapping that takes ▫$n$▫ binary inputs whose image is a binary ▫$m$▫-tuple; therefore it is represented as ▫$F:\text{GF}(2)^n \rightarrow \text{GF}(2)^m$▫. One of the most important cryptographic applications is the case ▫$n = m$▫, thus the S-box may be viewed as a function over ▫$\text{GF}(2^n)$▫. We show that certain classes of functions over ▫$\text{GF}(2^n)$▫ do not possess a cryptographic property known as APN (AlmostPerfect Nonlinear) permutations. On the other hand, when ▫$n$▫ is odd, an infinite class of APN permutations may be derived in a recursive manner, that is starting with a specific APN permutation on ▫$\text{GF}(2^k), k$▫ odd, APN permutations are derived over ▫$\text{GF}(2^{k+2i})$▫ for any ▫$i \geq 1$▫. Some theoretical results related to permutation polynomials and algebraic properties of the functions in the ring ▫$\text{GF}(q)[x,y]$▫ are also presented. For sparse polynomials over the field ▫$\text{GF}(2^n)$▫, an efficient algorithm for finding low degree I/O equations is proposed. |
---|
Ključne besede: | cryptoanalysis, cryptography, permutation polynomials, power mappings, APN functions, S-box, CCZ-equivalence, algebraic properties |
---|
Leto izida: | 2008 |
---|
Št. strani: | Str. 189-204 |
---|
PID: | 20.500.12556/RUP-3586 |
---|
UDK: | 512.624.95 |
---|
COBISS.SI-ID: | 15119193 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 3886 |
---|
Število prenosov: | 75 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |