Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Reachability relations in digraphs
Avtorji:ID Malnič, Aleksander (Avtor)
ID Marušič, Dragan (Avtor)
ID Seifter, Norbert (Avtor)
ID Šparl, Primož (Avtor)
ID Zgrablić, Boris (Avtor)
Datoteke:URL http://dx.doi.org/10.1016/j.ejc.2007.11.003
 
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:IAM - Inštitut Andrej Marušič
Opis:In this paper we study reachability relations on vertices of digraphs, informally defined as follows. First, the weight of a walk is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed in the direction opposite to their orientation. Then, a vertex ▫$u$▫ is ▫$R_k^+$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at u has weight in the interval ▫$[0,k]$▫. Similarly, a vertex ▫$u$▫ is ▫$R_k^-$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at ▫$u$▫ has weight in the interval ▫$[-k,0]$▫. For all positive integers ▫$k$▫, the relations ▫$R_k^+$▫ and ▫$R_k^-$▫ are equivalence relations on the vertex set of a given digraph. We prove that, for transitive digraphs, properties of these relations are closely related to other properties such as having property ▫$\mathbb{Z}$▫, the number of ends, growth conditions, and vertex degree.
Ključne besede:graph theory, digraph, reachability relations, end of a graph, property ▫$\mathbb{Z}$▫, growth
Leto izida:2008
Št. strani:str. 1566-1581
Številčenje:Vol. 29, no. 7
PID:20.500.12556/RUP-7717 Povezava se odpre v novem oknu
ISSN:0195-6698
UDK:519.17
DOI:10.1016/j.ejc.2007.11.003 Povezava se odpre v novem oknu
COBISS.SI-ID:2017509 Povezava se odpre v novem oknu
Datum objave v RUP:02.04.2017
Število ogledov:3088
Število prenosov:136
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:teorija grafov, usmerjeni grafi, rast


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici