Naslov: | Reachability relations in digraphs |
---|
Avtorji: | ID Malnič, Aleksander (Avtor) ID Marušič, Dragan (Avtor) ID Seifter, Norbert (Avtor) ID Šparl, Primož (Avtor) ID Zgrablić, Boris (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.ejc.2007.11.003
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | In this paper we study reachability relations on vertices of digraphs, informally defined as follows. First, the weight of a walk is equal to the number of edges traversed in the direction coinciding with their orientation, minus the number of edges traversed in the direction opposite to their orientation. Then, a vertex ▫$u$▫ is ▫$R_k^+$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at u has weight in the interval ▫$[0,k]$▫. Similarly, a vertex ▫$u$▫ is ▫$R_k^-$▫-related to a vertex ▫$v$▫ if there exists a 0-weighted walk from ▫$u$▫ to ▫$v$▫ whose every subwalk starting at ▫$u$▫ has weight in the interval ▫$[-k,0]$▫. For all positive integers ▫$k$▫, the relations ▫$R_k^+$▫ and ▫$R_k^-$▫ are equivalence relations on the vertex set of a given digraph. We prove that, for transitive digraphs, properties of these relations are closely related to other properties such as having property ▫$\mathbb{Z}$▫, the number of ends, growth conditions, and vertex degree. |
---|
Ključne besede: | graph theory, digraph, reachability relations, end of a graph, property ▫$\mathbb{Z}$▫, growth |
---|
Leto izida: | 2008 |
---|
Št. strani: | str. 1566-1581 |
---|
Številčenje: | Vol. 29, no. 7 |
---|
PID: | 20.500.12556/RUP-7717 |
---|
ISSN: | 0195-6698 |
---|
UDK: | 519.17 |
---|
DOI: | 10.1016/j.ejc.2007.11.003 |
---|
COBISS.SI-ID: | 2017509 |
---|
Datum objave v RUP: | 02.04.2017 |
---|
Število ogledov: | 3088 |
---|
Število prenosov: | 136 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |