Naslov: | Minimal normal subgroups of transitive permutation groups of square-free degree |
---|
Avtorji: | ID Dobson, Edward (Avtor) ID Malnič, Aleksander (Avtor) ID Marušič, Dragan (Avtor) ID Nowitz, Lewis A. (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.disc.2005.09.029
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | It is shown that a minimal normal subgroup of a transitive permutation group of square-free degree in its induced action is simple and quasiprimitive, with three exceptions related to ▫$A_5$▫, ▫$A_7$▫, and PSL(2,29). Moreover, it is shown that a minimal normal subgroup of a 2-closed permutation group of square-free degree in its induced action is simple. As an almost immediate consequence, it follows that a 2-closed transitive permutation group of square-free degree contains a semiregular element of prime order, thus giving a partial affirmative answer to the conjecture that all 2-closed transitive permutation groups contain such an element (see [D. Marušic, On vertex symmetric digraphs,Discrete Math. 36 (1981) 69-81; P.J. Cameron (Ed.), Problems from the fifteenth British combinatorial conference, Discrete Math. 167/168 (1997) 605-615]). |
---|
Ključne besede: | mathematics, graph theory, transitive permutation group, 2-closed group, square-free degree, semiregular automorphism, vertex-transitive graph |
---|
Leto izida: | 2007 |
---|
Št. strani: | str. 373-385 |
---|
Številčenje: | Vol. 307, iss. 3-5 |
---|
PID: | 20.500.12556/RUP-7719 |
---|
ISSN: | 0012-365X |
---|
UDK: | 519.17:512.54 |
---|
COBISS.SI-ID: | 14179673 |
---|
Datum objave v RUP: | 02.04.2017 |
---|
Število ogledov: | 2743 |
---|
Število prenosov: | 93 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |