Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:On strongly regular bicirculants
Avtorji:ID Malnič, Aleksander (Avtor)
ID Marušič, Dragan (Avtor)
ID Šparl, Primož (Avtor)
Datoteke:URL http://dx.doi.org/10.1016/j.ejc.2005.10.010
 
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:IAM - Inštitut Andrej Marušič
Opis:An ▫$n$▫-bicirculantis a graph having an automorphism with two orbits of length ▫$n$▫ and no other orbits. This article deals with strongly regular bicirculants. It is known that for a nontrivial strongly regular ▫$n$▫-bicirculant, ▫$n$▫ odd, there exists a positive integer m such that ▫$n=2m^2+2m+1▫$. Only three nontrivial examples have been known previously, namely, for ▫$m=1,2$▫ and 4. Case ▫$m=1$▫ gives rise to the Petersen graph and its complement, while the graphs arising from cases ▫$m=2$▫ and ▫$m=4$▫ are associated with certain Steiner systems. Similarly, if ▫$n$▫ is even, then ▫$n=2m^2$▫ for some ▫$m \ge 2$▫. Apart from a pair of complementary strongly regular 8-bicirculants, no other example seems to be known. A necessary condition for the existence of a strongly regular vertex-transitive ▫$p$▫-bicirculant, ▫$p$▫ a prime, is obtained here. In addition, three new strongly regular bicirculants having 50, 82 and 122 vertices corresponding, respectively, to ▫$m=3,4$▫ and 5 above, are presented. These graphs are not associated with any Steiner system, and together with their complements form the first known pairs of complementary strongly regular bicirculants which are vertex-transitive but not edge-transitive.
Ključne besede:mathematics, graph theory, graph, circulant, bicirculant, automorphism group
Leto izida:2007
Št. strani:str. 891-900
Številčenje:Vol. 28, iss. 3
PID:20.500.12556/RUP-7721 Povezava se odpre v novem oknu
ISSN:0195-6698
UDK:519.17:512.54
COBISS.SI-ID:14287705 Povezava se odpre v novem oknu
Datum objave v RUP:02.04.2017
Število ogledov:5120
Število prenosov:89
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:matematika, teorija grafov, graf, cirkulant, bicirkulant, grupa avtomorfizmov


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici