Naslov: | Hermite interpolation by rational G [sup] k motions of low degree |
---|
Avtorji: | ID Jaklič, Gašper (Avtor) ID Jüttler, Bert (Avtor) ID Knez, Marjetka (Avtor) ID Vitrih, Vito (Avtor) ID Žagar, Emil (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.cam.2012.08.021
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | Interpolation by rational spline motions is an important issue in robotics and related fields. In this paper a new approach to rational spline motion design is described by using techniques of geometric interpolation. This enables us to reduce the discrepancy in the number of degrees of freedom of the trajectory of the origin and of the rotational part of the motion. A general approach to geometric interpolation by rational spline motions is presented and two particularly important cases are analyzed, i.e., geometric continuous quartic rational motions and second order geometrically continuous rational spline motions of degree six. In both cases sufficient conditions on the given Hermite data are found which guarantee the uniqueness of the solution. If the given data do not fulfill the solvability conditions, a method to perturb them slightly is described. Numerical examples are presented which confirm the theoretical results and provide an evidence that the obtained motions have nice shapes. |
---|
Ključne besede: | mathematics, numerical analysis, motion design, geometric interpolation, rational spline motion, geometric continuity |
---|
Leto izida: | 2013 |
---|
Št. strani: | str. 20-30 |
---|
Številčenje: | Vol. 240 |
---|
PID: | 20.500.12556/RUP-7741 |
---|
ISSN: | 0377-0427 |
---|
UDK: | 519.65 |
---|
COBISS.SI-ID: | 16378713 |
---|
Datum objave v RUP: | 02.04.2017 |
---|
Število ogledov: | 2514 |
---|
Število prenosov: | 41 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |