Lupa

Iskanje po repozitoriju Pomoč

A- | A+ | Natisni
Iskalni niz: išči po
išči po
išči po
išči po
* po starem in bolonjskem študiju

Opcije:
  Ponastavi


1 - 8 / 8
Na začetekNa prejšnjo stran1Na naslednjo stranNa konec
1.
2.
Existence of non-Cayley Haar graphs
Yan-Quan Feng, István Kovács, Jie Wang, Da-Wei Yang, 2020, izvirni znanstveni članek

Ključne besede: graph, Cayley graph, Haar graph
Objavljeno v RUP: 16.06.2020; Ogledov: 1666; Prenosov: 101
URL Povezava na celotno besedilo

3.
4.
On groups all of whose Haar graphs are Cayley graphs
Yan-Quan Feng, István Kovács, Da-Wei Yang, 2019, izvirni znanstveni članek

Ključne besede: graph automorphism, Cayley graph, Haar graph
Objavljeno v RUP: 28.06.2019; Ogledov: 2259; Prenosov: 344
URL Povezava na celotno besedilo
Gradivo ima več datotek! Več...

5.
6.
7.
Elementary abelian groups of rank 5 are DCI-groups
István Kovács, Yan-Quan Feng, 2018, objavljeni povzetek znanstvenega prispevka na konferenci (vabljeno predavanje)

Ključne besede: elementary abelian group, rank, DCI-group
Objavljeno v RUP: 06.02.2018; Ogledov: 2645; Prenosov: 80
URL Povezava na celotno besedilo

8.
On 2-fold covers of graphs
Yan-Quan Feng, Klavdija Kutnar, Aleksander Malnič, Dragan Marušič, 2008, izvirni znanstveni članek

Opis: A regular covering projection ▫$\wp : \widetilde{X} \to X$▫ of connected graphs is ▫$G$▫-admissible if ▫$G$▫ lifts along ▫$\wp$▫. Denote by ▫$\tilde{G}$▫ the lifted group, and let CT▫$(\wp)$▫ be the group of covering transformations. The projection is called ▫$G$▫-split whenever the extension ▫{$\mathrm{CT}}(\wp) \to \tilde{G} \to G$▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that ▫$G$▫ is transitive on ▫$X$▫, a ▫$G$▫-split cover is said to be ▫$G$▫-split-transitive if all complements ▫$\tilde{G} \cong G$▫ of CT▫$(\wp)$▫ within ▫$\tilde{G}$▫ are transitive on ▫$\widetilde{X}$▫; it is said to be ▫$G$▫-split-sectional whenever for each complement ▫$\tilde{G}$▫ there exists a ▫$\tilde{G}$▫-invariant section of ▫$\wp$▫; and it is called ▫$G$▫-split-mixed otherwise. It is shown, when ▫$G$▫ is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no ▫$G$▫-split-transitive 2-covers exist) when ▫$G$▫ is 1-regular or 4-regular. In all other cases, that is, if ▫$G$▫ is ▫$s$▫-regular, ▫$s=2,3$▫ or ▫$5$▫, a necessary and sufficient condition for the existence of a transitive complement ▫$\tilde{G}$▫ is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form ▫$A_{12k+10}$▫ is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group ▫$G$▫ has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed.
Ključne besede: graph theory, graphs, cubic graphs, symmetric graphs, ▫$s$▫-regular group, regular covering projection
Objavljeno v RUP: 15.10.2013; Ogledov: 4260; Prenosov: 35
URL Povezava na celotno besedilo

Iskanje izvedeno v 0.03 sek.
Na vrh
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici