Vaš brskalnik ne omogoča JavaScript!
JavaScript je nujen za pravilno delovanje teh spletnih strani. Omogočite JavaScript ali uporabite sodobnejši brskalnik.
ENG
Prijava
Iskanje
Brskanje
Oddaja dela
Statistika
RUP
FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
FHŠ - Fakulteta za humanistične študije
FM - Fakulteta za management
FTŠ Turistica - Fakulteta za turistične študije - Turistica
FVZ - Fakulteta za vede o zdravju
IAM - Inštitut Andrej Marušič
PEF - Pedagoška fakulteta
UPR - Univerza na Primorskem
ZUP - Založba Univerze na Primorskem
COBISS
Univerza na Primorskem, Univerzitetna knjižnica - vsi oddelki
Prva stran
/
Izpis gradiva
Izpis gradiva
A-
|
A+
|
Natisni
Naslov:
Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0
Avtorji:
ID
Miklavič, Štefko
(Avtor)
Datoteke:
http://dx.doi.org/10.1016/j.ejc.2008.02.001
Jezik:
Angleški jezik
Vrsta gradiva:
Delo ni kategorizirano
Tipologija:
1.01 - Izvirni znanstveni članek
Organizacija:
IAM - Inštitut Andrej Marušič
Opis:
Let
Γ
denote a
Q
-polynomial distance-regular graph with diameter
D
≥
3
and intersection numbers
a
1
=
0
,
a
2
≠
0
. Let
X
denote the vertex set of
Γ
and let
A
∈
M
a
t
X
(
C
)
denote the adjacency matrix of
Γ
. Fix
x
∈
X
and let denote
A
∗
∈
M
a
t
X
(
C
)
the corresponding dual adjacency matrix. Let
T
denote the subalgebra of
A
M
a
t
X
(
C
)
generated by
A
,
A
∗
. We call
T
the Terwilliger algebra of
Γ
with respect to
x
. We show that up to isomorphism there exists a unique irreducible
T
-module
W
with endpoint 1. We show that
W
has dimension
2
D
−
2
. We display a basis for
W
which consists of eigenvectors for
A
∗
. We display the action of
A
on this basis. We show that
W
appears in the standard module of
Γ
with multiplicity
k
−
1
, where
k
is the valency of
Γ
.
Ključne besede:
mathematics
,
graph theory
,
adjacency matrix
,
distance-regular graph
,
Terwilliger algebra
Leto izida:
2008
Št. strani:
str. 192-207
Številčenje:
Vol. 30, no. 1
PID:
20.500.12556/RUP-1200
ISSN:
0195-6698
UDK:
519.17
COBISS.SI-ID:
14627929
Datum objave v RUP:
15.10.2013
Število ogledov:
6650
Število prenosov:
34
Metapodatki:
Citiraj gradivo
Navadno besedilo
BibTeX
EndNote XML
EndNote/Refer
RIS
ABNT
ACM Ref
AMA
APA
Chicago 17th Author-Date
Harvard
IEEE
ISO 690
MLA
Vancouver
:
MIKLAVIČ, Štefko, 2008, Q-polynomial distance-regular graphs with a [sub] 1 [equal] 0 and a [sub] 2 [not equal] 0. [na spletu]. 2008. Vol. 30, no. 1, p. 192–207. [Dostopano 1 april 2025]. Pridobljeno s: http://dx.doi.org/10.1016/j.ejc.2008.02.001
Kopiraj citat
Skupna ocena:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 glasov)
Vaša ocena:
Ocenjevanje je dovoljeno samo
prijavljenim
uporabnikom.
Objavi na:
Podobna dela iz repozitorija:
Mast cell activation test in the diagnosis of allergic disease and anaphylaxis
Hymenoptera venom immunotherapy
Selective response to omalizumab in a patient with concomitant ncMCAS and POTS
An EAACI position paper on the investigation of perioperative immediate hypersensitivity reactions
Comparative epidemiology of suspected perioperative hypersensitivity reactions
Podobna dela iz ostalih repozitorijev:
Clonal mast cell disorders and hereditary [alpha]-tryptasemia as risk factors for anaphylaxis
High burden of clonal mast cell disorders and hereditary α-[alpha]tryptasemia in patients who need Hymenoptera venom immunotherapy
Integrative transcriptomic analysis in human and mouse model of anaphylaxis identifies gene signatures associated with cell movement, migration and neuroinflammatory signalling
Predictors of severe adverse events during immunotherapy
Diagnostic value of testing allergenic activity via activation of sensitized mast cells in allergy to bee or wasp venom
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.
Sekundarni jezik
Jezik:
Angleški jezik
Ključne besede:
matematika
,
teorija grafov
,
razdaljno regularni grafi
,
matrika sosednosti
,
Terwilligerjeva algebra
Komentarji
Dodaj komentar
Za komentiranje se morate
prijaviti
.
Komentarji (0)
0 - 0 / 0
Ni komentarjev!
Nazaj