Processing math: 28%
Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Leonard triples and hypercubes
Avtorji:ID Miklavič, Štefko (Avtor)
Datoteke:URL http://dx.doi.org/10.1007/s10801-007-0108-x
 
Jezik:Angleški jezik
Vrsta gradiva:Delo ni kategorizirano
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:IAM - Inštitut Andrej Marušič
Opis:Let V denote a vector space over C with finite positive dimension. By a Leonard triple on V we mean an ordered triple of linear operators on V such that for each of these operators there exists a basis of V with respect to which the matrix representing that operator is diagonal and the matrices representing the other two operators are irreducible tridiagonal. Let D denote a positive integer and let QD denote the graph of the D-dimensional hypercube. Let X$ denote the vertex set of ▫${\mathcal{Q}}_D and let A \in {\mathrm{Mat}}_X ({\mathbb{C}}) denote the adjacency matrix of {\mathcal{Q}}_D. Fix x \in X and let A^\ast \in {\mathrm{Mat}}_X({\mathbb{C}}) denote the corresponding dual adjacency matrix. Let T denote the subalgebra of {\mathrm{Mat}}_X({\mathbb{C}})$ generated by ▫$A,A^\ast. We refer to T as the Terwilliger algebra of {\mathcal{Q}}_D with respect to x. The matrices A and A^\ast are related by the fact that 2iA = A^\ast A^\varepsilon - A^\varepsilon A^\ast and 2iA^\ast = A^\varepsilon A - AA^\varepsilon, where 2iA^\varepsilon = AA^\ast - A^\ast A and i^2 = -1. We show that the triple A, A^\ast, A^\varepsilon acts on each irreducible T-module as a Leonard triple. We give a detailed description of these Leonard triples.
Ključne besede:mathematics, graph theory, Leonard triple, distance-regular graph, hypercube, Terwilliger algebra
Leto izida:2007
Št. strani:str. 397-424
Številčenje:Vol. 28, no. 3
PID:20.500.12556/RUP-1597 Povezava se odpre v novem oknu
ISSN:0925-9899
UDK:519.17
COBISS.SI-ID:14624857 Povezava se odpre v novem oknu
Datum objave v RUP:15.10.2013
Število ogledov:5908
Število prenosov:125
Metapodatki:XML DC-XML DC-RDF
:
MIKLAVIČ, Štefko, 2007, Leonard triples and hypercubes. [na spletu]. 2007. Vol. 28, no. 3, p. 397–424. [Dostopano 1 april 2025]. Pridobljeno s: http://dx.doi.org/10.1007/s10801-007-0108-x
Kopiraj citat
  
Skupna ocena:
0.5
1
1.5
2
2.5
3
3.5
4
4.5
5
(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Sekundarni jezik

Jezik:Angleški jezik
Ključne besede:matematika, teorija grafov, razdaljno regularni grafi, Leonardova trojica, hiperkocka, Terwilligerjeva algebra


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici