| Naslov: | Classification of convex polyhedra by their rotational orbit Euler characteristic |
|---|
| Avtorji: | ID Kovič, Jurij (Avtor) |
| Datoteke: | RAZ_Kovic_Jurij_i2017.pdf (272,96 KB) MD5: 34C55610C9518FB2AA931FEDFA9E96B9
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Neznano |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | ZUP - Založba Univerze na Primorskem
|
|---|
| Opis: | Let ▫$\mathcal P$▫ be a polyhedron whose boundary consists of flat polygonal faces on some compact surface ▫$S(\mathcal P)$▫ (not necessarily homeomorphic to the sphere ▫$S^{2}$)▫. Let ▫$vo_{R}(\mathcal P), eo_{R}(\mathcal P)$▫, ▫$ fo_{R}(\mathcal P)$▫ be the numbers of rotational orbits of vertices, edges and faces, respectively, determined by the group ▫$G = G_{R}(P)$▫ of all the rotations of the Euclidean space ▫$E^{3}$▫ preserving ▫$\mathcal P$▫. We define the ''rotational orbit Euler characteristic'' of ▫$\mathcal P$▫ as the number ▫$Eo_{R}(\mathcal P) = vo_{R}(\mathcal P) - eo_{R}(\mathcal P) + fo_{R}(\mathcal P)$▫. Using the Burnside lemma we obtain the lower and the upper bound for ▫$Eo_{R}(\mathcal P)$▫ in terms of the genus of the surface ▫$S(P)$▫. We prove that ▫$Eo_{R} \in \lbrace 2,1,0,-1\rbrace $▫ for any convex polyhedron ▫$\mathcal P$▫. In the non-convex case ▫$Eo_{R}$▫ may be arbitrarily large or small. |
|---|
| Ključne besede: | polyhedron, rotational orbit, Euler characteristic |
|---|
| Leto izida: | 2017 |
|---|
| Št. strani: | str. 23-30 |
|---|
| Številčenje: | Vol. 13, no. 1 |
|---|
| PID: | 20.500.12556/RUP-17627  |
|---|
| UDK: | 514.113.5:519.1 |
|---|
| ISSN pri članku: | 1855-3966 |
|---|
| COBISS.SI-ID: | 17897561  |
|---|
| Datum objave v RUP: | 03.01.2022 |
|---|
| Število ogledov: | 2056 |
|---|
| Število prenosov: | 19 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |