Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Occupancy estimation using indoor air quality data : opportunities and privacy implications
Avtorji:ID Vake, Domen (Avtor)
ID Hrovatin, Niki (Avtor)
ID Vičič, Jernej (Avtor)
ID Tošić, Aleksandar (Avtor)
Datoteke:.pdf RAZ_Vake_Domen_2025.pdf (3,66 MB)
MD5: 34B96F5FF837F622E268D4C1C3DFE974
 
URL https://www.sciencedirect.com/science/article/pii/S0378778825006243?via%3Dihub
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
Opis:Indoor Air Quality (IAQ) has long been a significant concern due to its health-related risks and potential benefits. Readily available air quality sensors are now affordable and have been installed in many buildings with public buildings taking center stage. The dynamics of IAQ are commonly studied in relation to different materials used in construction, building design, room utility and effects on occupants. However, besides what the sensors were designed to measure, it is possible to infer other information. In this paper, we present a Machine Learning (ML) model that predicts the presence of people in the room with an accuracy as high as 93 % and the exact number of occupants with 2.17 MAE. We validate our proposed approach in the use-case of an elementary school in Slovenia. In collaboration with the elementary school in Ajdovščina, 8 air quality sensors were placed in classrooms and air quality parameters (VOC, CO, Temperature, and Humidity) were monitored for 6 months. During the monitoring period, school staff collected anonymous data about classroom occupancy. The indoor air quality data was paired with external weather data as well as occupancy to train the model. Moreover, we compare our approach with other commonly used ML approaches and provide results related to our use case. Finally, these results highlight the privacy concerns related to structural monitoring due to the established ability to infer potentially sensitive information.
Ključne besede:indoor air quality, occupancy estimation, machine learning, sensor networks, privacy, building monitoring
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:25.05.2025
Leto izida:2025
Št. strani:str. 1-12
Številčenje:Vol. 343, article 115894
PID:20.500.12556/RUP-21303 Povezava se odpre v novem oknu
UDK:004.8
ISSN pri članku:0378-7788
DOI:10.1016/j.enbuild.2025.115894 Povezava se odpre v novem oknu
COBISS.SI-ID:237930755 Povezava se odpre v novem oknu
Datum objave v RUP:02.06.2025
Število ogledov:140
Število prenosov:7
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Energy and buildings
Skrajšan naslov:Energy build.
Založnik:Elsevier
ISSN:0378-7788
COBISS.SI-ID:25395200 Povezava se odpre v novem oknu

Gradivo je financirano iz projekta

Financer:ARIS - Javna agencija za znanstvenoraziskovalno in inovacijsko dejavnost Republike Slovenije
Številka projekta:I0-0035-2022
Naslov:Infrastrukturna skupina Univerze na Primorskem

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:kakovost zraka v zaprtih prostorih, ocena zasedenosti, strojno učenje, senzorska omrežja, zasebnost, spremljanje stavb


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici