Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Estimation of task-related dynamic brain connectivity via data inflation and classification model explainability
Avtorji:ID Rogelj, Peter (Avtor)
Datoteke:.pdf RAZ_Rogelj_Peter_2025.pdf (1,74 MB)
MD5: 7C4B39DA6003CC49351646803B68D93D
 
URL https://link.springer.com/article/10.1007/s12021-025-09733-6
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
Opis:Study of brain function often involves analyzing task-related switching between intrinsic brain networks, which connect various brain regions. Functional brain connectivity analysis methods aim to estimate these networks but are limited by the statistical constraints of windowing functions, which reduce temporal resolution and hinder explainability of highly dynamic processes. In this work, we propose a novel approach to functional connectivity analysis through the explainability of EEG classification. Unlike conventional methods that condense raw data into extracted features, our approach inflates raw EEG data by decomposition into meaningful components that explain processes in the application domain. To uncover the brain connectivity that affects classification decisions, we introduce a new method of dynamic influence data inflation (DIDI), which extracts signals representing interactions between electrode regions. These inflated data are then classified using an end-to-end neural network classifier architecture designed for raw EEG signals. Saliency map estimation from trained classifiers reveals the connectivity dynamics affecting classification decisions, which can be visualized as dynamic connectivity support maps for improved interpretability. The methodology is demonstrated on two publicly available datasets: one for imagined motor movement classification and the other for emotion classification. The results highlight the dual benefits of our approach: in addition to providing interpretable insights into connectivity dynamics it increases classification accuracy.
Ključne besede:EEG, functional connectivity, data inflation, classification, explainability, saliency maps
Status publikacije:Objavljeno
Verzija publikacije:Objavljena publikacija
Datum objave:03.06.2025
Leto izida:2025
Št. strani:str. 1-16
Številčenje:Vol. 23, article no. ǂ33
PID:20.500.12556/RUP-21320 Povezava se odpre v novem oknu
UDK:004:616.831-073.7-71
ISSN pri članku:1559-0089
DOI:10.1007/s12021-025-09733-6 Povezava se odpre v novem oknu
COBISS.SI-ID:238192387 Povezava se odpre v novem oknu
Datum objave v RUP:04.06.2025
Število ogledov:113
Število prenosov:9
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Neuroinformatics
Skrajšan naslov:Neuroinformatics
Založnik:Humana Press
ISSN:1559-0089
COBISS.SI-ID:513713433 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:EEG, funkcijska povezljivost, razširjanje podatkov, razvrščanje, razložljivost, zemljevidi pomembnosti


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici