| Naslov: | On reduced Hamilton walks |
|---|
| Avtorji: | ID Malnič, Aleksander (Avtor) ID Požar, Rok (Avtor) |
| Datoteke: | RAZ_Malnic_Aleksander_2026.pdf (1,91 MB) MD5: 66FADE9EBCDF55DD76090DB30C0614BF
https://www.sciencedirect.com/science/article/pii/S0096300325004217
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije IAM - Inštitut Andrej Marušič
|
|---|
| Opis: | A Hamilton walk in a finite graph is a walk, either open or closed, that traverses every vertex at least once. Here, we introduce Hamilton walks that are reduced in the sense that they avoid immediate backtracking: a reduced Hamilton walk never traverses the same edge forth and back consecutively. While every connected graph admits a Hamilton walk, existence of a reduced Hamilton walk is not guaranteed for all graphs. However, we prove that a reduced Hamilton walk does exist in a connected graph with minimal valency at least 2. Furthermore, given such a graph on n vertices, we present an O(n2)-time algorithm that constructs a reduced Hamilton walk of length at most n(n+3)/2. Specifically, for a graph belonging to a family of regular expander graphs, we can find a reduced Hamilton walk of length at most c(6n−2)logn+2n, where c is a constant independent of n. |
|---|
| Ključne besede: | algorithm, Hamilton walk, nonstandard metric, reduced walk |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 02.09.2025 |
|---|
| Leto izida: | 2026 |
|---|
| Št. strani: | str. 1-11 |
|---|
| Številčenje: | Vol. 510, art. 129695 |
|---|
| PID: | 20.500.12556/RUP-21698  |
|---|
| UDK: | 51 |
|---|
| ISSN pri članku: | 0096-3003 |
|---|
| DOI: | 10.1016/j.amc.2025.129695  |
|---|
| COBISS.SI-ID: | 248238083  |
|---|
| Datum objave v RUP: | 09.09.2025 |
|---|
| Število ogledov: | 433 |
|---|
| Število prenosov: | 4 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |