| Naslov: | Regular and semi-regular representations of groups by posets |
|---|
| Avtorji: | ID Barmak, Jonathan A. (Avtor) |
| Datoteke: | AMC_Barmak_2025.pdf (431,19 KB) MD5: E6C7CF9AF8576811C4658AB76800E6A0
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | ZUP - Založba Univerze na Primorskem
|
|---|
| Opis: | By a result of Babai, with finitely many exceptions, every group G admits a semi-regular poset representation with three orbits, that is, a poset P with automorphism group Aut(P) ≃ G such that the action of Aut(P) on the underlying set is free and with three orbits. Among finite groups, only the trivial group and ℤ_2 have a regular poset representation (i.e. semi-regular with one orbit), however many infinite groups admit such a representation. In this paper we study non-necessarily finite groups which have a regular representation or a semi-regular representation with two orbits. We prove that if G admits a Cayley graph which is locally the Cayley graph of a free group, then it has a semi-regular representation of height 1 with two orbits. In this case we will see that any extension of the integers by G admits a regular representation. Applications are given to finite simple groups, hyperbolic groups, random groups and indicable groups. |
|---|
| Ključne besede: | automorphism group of posets, Cayley graph, Dehn presentation, simple groups, random groups |
|---|
| Status publikacije: | Objavljeno |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 13.03.2025 |
|---|
| Založnik: | Založba Univerze na Primorskem |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | 18 str. |
|---|
| Številčenje: | Vol. 25, no. 2, [article no.] P2.06 |
|---|
| PID: | 20.500.12556/RUP-21991  |
|---|
| UDK: | 51 |
|---|
| eISSN: | 1855-3974 |
|---|
| DOI: | https://doi.org/10.26493/1855-3974.3312.bb7  |
|---|
| Datum objave v RUP: | 21.10.2025 |
|---|
| Število ogledov: | 284 |
|---|
| Število prenosov: | 0 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |