Naslov: | Jordan [tau]-derivations of locally matrix rings |
---|
Avtorji: | ID Chuang, Chen-Lian (Avtor) ID Fošner, Ajda (Avtor) ID Lee, Tsiu Kwen (Avtor) |
Datoteke: | http://dx.doi.org/10.1007/s10468-011-9329-8
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | Let ▫$R$▫ be a prime, locally matrix ring of characteristic not 2 and let ▫$Q_{ms}(R)$▫ be the maximal symmetric ring of quotients of ▫$R$▫. Suppose that ▫$\delta \colon R \to Q_{ms}(R)$▫ is a Jordan ▫$\tau$▫-derivation, where ▫$\tau$▫ is an anti-automorphism of $R$. Then there exists ▫$a \in Q_{ms}(R)$▫ such that ▫$\delta(x) = xa - a\tau(x)$▫ for all ▫$x \in R$▫. Let ▫$X$▫ be a Banach space over the field ▫$\mathbb{F}$▫ of real or complex numbers and let ▫$\mathcal{B}(X)$▫ be the algebra of all bounded linear operators on ▫$X$▫. We prove that ▫$Q_{ms}(\mathcal{B}(X)) = \mathcal{B}(X)$▫, which provides the viewpoint of ring theory for some results concerning derivations on the algebra ▫$\mathcal{B}(X)$▫. In particular, all Jordan ▫$\tau$▫-derivations of ▫$\mathcal{B}(X)$▫ are inner if ▫$\dim_{\mathbb{F}} X>1$▫. |
---|
Ključne besede: | mathematics, algebra, anti-automorphism, locally matrix ring, prime ring, Jordan homomorphism, Jordan ▫$\tau$▫-derivation, Banach space |
---|
Leto izida: | 2013 |
---|
Št. strani: | str. 755-763 |
---|
Številčenje: | Vol. 16, iss. 3 |
---|
PID: | 20.500.12556/RUP-2200 |
---|
ISSN: | 1386-923X |
---|
UDK: | 512.552 |
---|
COBISS.SI-ID: | 16195673 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 4919 |
---|
Število prenosov: | 85 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |