| Naslov: | Almost Maiorana-McFarland bent functions |
|---|
| Avtorji: | ID Kudin, Sadmir (Avtor) ID Pašalić, Enes (Avtor) ID Polujan, Alexandr (Avtor) ID Zhang, Fengrong (Avtor) ID Zhao, Haixia (Avtor) |
| Datoteke: | RAZ_Kudin_Sadmir_2025.pdf (370,37 KB) MD5: C4221A8F538AC0351713DF98C9E8A482
https://ieeexplore.ieee.org/document/11180145
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
|
|---|
| Opis: | In this article, we study bent functions on F2m 2 of the form f (x, y) = x·φ(y)+h(y), where x ∈ Fm−1 2 and y ∈ Fm+1 2 , which form the generalized Maiorana-McFarland class (denoted by GMMm+1) and are referred to as almost Maiorana-McFarland bent functions. We provide a complete characterization of the bent property for such functions and determine their duals. Specifically, we show that f is bent if and only if the mapping φ partitions Fm+1 2 into 2-dimensional affine subspaces, on each of which the function h has odd weight. While the partition of Fm+1 2 into 2-dimensional affine subspaces is crucial for the bentness, we demonstrate that the algebraic structure of these subspaces plays an even greater role in ensuring that the constructed bent func- tions f are excluded from the completed Maiorana-McFarland class M# (the set of bent functions that are extended-affine equivalent to bent functions from the Maiorana-McFarland class M). Consequently, we investigate which properties of mappings φ : Fm+1 2 → Fm−1 2 lead to bent functions of the form f (x, y) = x · φ(y) + h(y) both inside and outside M# and provide construction methods for suitable Boolean functions h on Fm+1 2 . As part of this framework, we present a simple algorithm for constructing partitions of the vector space Fm+1 2 together with appropriate Boolean functions h that generate bent functions outside M#. When 2m = 8, we explicitly identify many such partitions that produce at least 278 distinct bent functions on F8 2 that do not belong to M#, thereby generating more bent functions outside M# than the total number of 8-variable bent functions in M# (whose cardinality is approximately 277). Additionally, we demonstrate that concatenating four almost Maiorana-McFarland bent functions outside M#, i.e., defining f = f1|| f2|| f3|| f4 where fi < M#, can result in a bent function f ∈ M#. This finding essentially answers an open problem posed recently in Kudin et al. (IEEE Trans. Inf. Theory 71(5): 3999- 4011, 2025). Conversely, using a similar approach to concatenate our functions f1|| f2|| f3|| f4, where each fi ∈ M#, we generate bent functions that are provably outside M#. |
|---|
| Ključne besede: | bent functions, Maiorana-McFarland class, M-subspaces |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 25.09.2025 |
|---|
| Leto izida: | 2025 |
|---|
| Št. strani: | str. 9698-9713 |
|---|
| Številčenje: | Vol. 71, no. 12 |
|---|
| PID: | 20.500.12556/RUP-22352  |
|---|
| UDK: | 51 |
|---|
| ISSN pri članku: | 0018-9448 |
|---|
| DOI: | 10.1109/TIT.2025.3614379  |
|---|
| COBISS.SI-ID: | 263044867  |
|---|
| Datum objave v RUP: | 29.12.2025 |
|---|
| Število ogledov: | 31 |
|---|
| Število prenosov: | 2 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |