| Naslov: | Nut graphs with a prescribed number of vertex and edge orbits |
|---|
| Avtorji: | ID Bašić, Nino (Avtor) ID Damnjanović, Ivan (Avtor) |
| Datoteke: | RAZ_Basic_Nino_2026.pdf (445,35 KB) MD5: 88A373D5D6B2922A8B9EE3E1E3221868
https://link.springer.com/article/10.1007/s10801-025-01492-6
|
|---|
| Jezik: | Angleški jezik |
|---|
| Vrsta gradiva: | Članek v reviji |
|---|
| Tipologija: | 1.01 - Izvirni znanstveni članek |
|---|
| Organizacija: | FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
|
|---|
| Opis: | A nut graph is a nontrivial graph whose adjacency matrix has a one-dimensional null space spanned by a vector without zero entries. Recently, it was shown that a nut graph has more edge orbits than vertex orbits. It was also shown that for any even $r \geq 2$ and any $k \geq r + 1$, there exist infinitely many nut graphs with r vertex orbits and k edge orbits. Here, we extend this result by finding all the pairs $(r, k)$ for which there exists a nut graph with $r$ vertex orbits and $k$ edge orbits. In particular, we show that for any $k \geq 2$, there are infinitely many Cayley nut graphs with $k$ edge orbits and $k$ arc orbits. |
|---|
| Ključne besede: | nut graph, vertex orbit, edge orbit, arc orbit, Cayley graph, automorphism |
|---|
| Verzija publikacije: | Objavljena publikacija |
|---|
| Datum objave: | 08.01.2026 |
|---|
| Leto izida: | 2026 |
|---|
| Št. strani: | str. 1-12 |
|---|
| Številčenje: | Vol. 63, iss. 1, article no. 9 |
|---|
| PID: | 20.500.12556/RUP-22449  |
|---|
| UDK: | 519.17 |
|---|
| ISSN pri članku: | 0925-9899 |
|---|
| COBISS.SI-ID: | 264172035  |
|---|
| Datum objave v RUP: | 09.01.2026 |
|---|
| Število ogledov: | 164 |
|---|
| Število prenosov: | 5 |
|---|
| Metapodatki: |  |
|---|
|
:
|
Kopiraj citat |
|---|
| | | | Skupna ocena: | (0 glasov) |
|---|
| Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
|---|
| Objavi na: |  |
|---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |