Lupa

Izpis gradiva Pomoč

A- | A+ | Natisni
Naslov:Predictable artificial intelligence
Avtorji:ID Zhou, Lexin (Avtor)
ID Casares, Pablo A. M. (Avtor)
ID Martínez-Plumed, Fernando (Avtor)
ID Burden, John (Avtor)
ID Burnell, Ryan (Avtor)
ID Cheke, Lucy (Avtor)
ID Ferri, Cèsar (Avtor)
ID Marcoci, Alexandru (Avtor)
ID Mehrbakhsh, Behzad (Avtor)
ID Moros-Daval, Yael (Avtor)
ID Rutar, Danaja (Avtor)
Datoteke:.pdf RAZ_Zhou_Lexin_2026.pdf (4,86 MB)
MD5: 01E78DFB20707B7A4BA7EEAAFDDF1502
 
URL https://www.sciencedirect.com/science/article/pii/S0004370226000172
 
Jezik:Angleški jezik
Vrsta gradiva:Članek v reviji
Tipologija:1.01 - Izvirni znanstveni članek
Organizacija:FAMNIT - Fakulteta za matematiko, naravoslovje in informacijske tehnologije
Opis:Many areas of artificial intelligence, and machine learning in particular, aim at being probably correct, i.e., valid on average, rather than pursuing the idealistic goal of being provably valid for all inputs. However, AI systems could still be predictably valid, such as an imperfect robot deliverer for which we can reliably and precisely predict the task instances for which it is correct and safe, its valid operating range. “Predictable AI” is a nascent research area that explores ways of anticipating key validity indicators (e.g., performance, safety) of present and future AI ecosystems. We argue that achieving predictability is crucial for fostering trust, liability, control, alignment and safety of AI, and thus should be prioritised over performance. We formally characterise predictability, explore its most relevant components, illustrate what can be predicted, describe alternative candidates for predictors, as well as the trade-offs between maximising validity and predictability. To illustrate these concepts, we bring an array of illustrative examples covering diverse ecosystem configurations. “Predictable AI” is related to other areas of technical and non-technical AI research, but have distinctive questions, hypotheses, techniques and challenges. This paper aims to elucidate them, calls for identifying paths towards a landscape of predictably valid AI systems and outlines the potential impact of this emergent field.
Ključne besede:predictable AI, general-purpose AI, AI safety
Datum objave:30.01.2026
Leto izida:2026
Št. strani:str. 1-21
Številčenje:Vol. 353, article 104491
PID:20.500.12556/RUP-22641 Povezava se odpre v novem oknu
UDK:004.8
ISSN pri članku:1872-7921
DOI:10.1016/j.artint.2026.104491 Povezava se odpre v novem oknu
COBISS.SI-ID:267372803 Povezava se odpre v novem oknu
Datum objave v RUP:09.02.2026
Število ogledov:40
Število prenosov:2
Metapodatki:XML DC-XML DC-RDF
:
Kopiraj citat
  
Skupna ocena:(0 glasov)
Vaša ocena:Ocenjevanje je dovoljeno samo prijavljenim uporabnikom.
Objavi na:Bookmark and Share


Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše podrobnosti ali sproži prenos.

Gradivo je del revije

Naslov:Artificial intelligence
Založnik:Elsevier
ISSN:1872-7921
COBISS.SI-ID:23082245 Povezava se odpre v novem oknu

Licence

Licenca:CC BY 4.0, Creative Commons Priznanje avtorstva 4.0 Mednarodna
Povezava:http://creativecommons.org/licenses/by/4.0/deed.sl
Opis:To je standardna licenca Creative Commons, ki daje uporabnikom največ možnosti za nadaljnjo uporabo dela, pri čemer morajo navesti avtorja.

Sekundarni jezik

Jezik:Slovenski jezik
Ključne besede:napovedljiva UI, generalno inteligentna UI, varnost UI


Komentarji

Dodaj komentar

Za komentiranje se morate prijaviti.

Komentarji (0)
0 - 0 / 0
 
Ni komentarjev!

Nazaj
Logotipi partnerjev Univerza v Mariboru Univerza v Ljubljani Univerza na Primorskem Univerza v Novi Gorici