Naslov: | Distance-regular Cayley graphs on dihedral groups |
---|
Avtorji: | ID Miklavič, Štefko (Avtor) ID Potočnik, Primož (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.jctb.2006.03.003
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | The main result of this article is a classification of distance-regular Cayley graphs on dihedral groups. There exist four obvious families of such graphs, which are called trivial. These are: complete graphs, complete bipartite graphs, complete bipartite graphs with the edges of a 1-factor removed, and cycles. It is proved that every non-trivial distance-regular Cayley graph on a dihedral group is bipartite, non-antipodal, has diameter 3 and arises either from a cyclic di#erence set, or possibly (if any such exists) from a dihedral difference set satisfying some additional conditions. Finally, all distance-transitive Cayley graphs on dihedral groups are determined. It transpires that a Cayley graph on a dihedral group is distance-transitive if and only if it is trivial, or isomorphic to the incidence or to the non-incidence graph of a projective space ▫$\mathrm{PG}_{d-1} (d,q)$▫, ▫$d \ge 2$▫, or the unique pair of complementary symmetric designs on 11 vertices. |
---|
Ključne besede: | mathematics, grah theory, distance-regular graph, distance-transitive graph, Cayley graph, dihedral group, dihedrant, difference set |
---|
Leto izida: | 2007 |
---|
Št. strani: | str. 14-33 |
---|
Številčenje: | Vol. 97, no. 1 |
---|
PID: | 20.500.12556/RUP-2594 |
---|
ISSN: | 0095-8956 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 1909207 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 3602 |
---|
Število prenosov: | 100 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |