Naslov: | On 2-fold covers of graphs |
---|
Avtorji: | ID Feng, Yan-Quan (Avtor) ID Kutnar, Klavdija (Avtor) ID Malnič, Aleksander (Avtor) ID Marušič, Dragan (Avtor) |
Datoteke: | http://dx.doi.org/10.1016/j.jctb.2007.07.001
|
---|
Jezik: | Angleški jezik |
---|
Vrsta gradiva: | Delo ni kategorizirano |
---|
Tipologija: | 1.01 - Izvirni znanstveni članek |
---|
Organizacija: | IAM - Inštitut Andrej Marušič
|
---|
Opis: | A regular covering projection ▫$\wp : \widetilde{X} \to X$▫ of connected graphs is ▫$G$▫-admissible if ▫$G$▫ lifts along ▫$\wp$▫. Denote by ▫$\tilde{G}$▫ the lifted group, and let CT▫$(\wp)$▫ be the group of covering transformations. The projection is called ▫$G$▫-split whenever the extension ▫{$\mathrm{CT}}(\wp) \to \tilde{G} \to G$▫ splits. In this paper, split 2-covers are considered, with a particular emphasis given to cubic symmetric graphs. Supposing that ▫$G$▫ is transitive on ▫$X$▫, a ▫$G$▫-split cover is said to be ▫$G$▫-split-transitive if all complements ▫$\tilde{G} \cong G$▫ of CT▫$(\wp)$▫ within ▫$\tilde{G}$▫ are transitive on ▫$\widetilde{X}$▫; it is said to be ▫$G$▫-split-sectional whenever for each complement ▫$\tilde{G}$▫ there exists a ▫$\tilde{G}$▫-invariant section of ▫$\wp$▫; and it is called ▫$G$▫-split-mixed otherwise. It is shown, when ▫$G$▫ is an arc-transitive group, split-sectional and split-mixed 2-covers lead to canonical double covers. Split-transitive covers, however, are considerably more difficult to analyze. For cubic symmetric graphs split 2-cover are necessarily canonical double covers (that is, no ▫$G$▫-split-transitive 2-covers exist) when ▫$G$▫ is 1-regular or 4-regular. In all other cases, that is, if ▫$G$▫ is ▫$s$▫-regular, ▫$s=2,3$▫ or ▫$5$▫, a necessary and sufficient condition for the existence of a transitive complement ▫$\tilde{G}$▫ is given, and moreover, an infinite family of split-transitive 2-covers based on the alternating groups of the form ▫$A_{12k+10}$▫ is constructed. Finally, chains of consecutive 2-covers, along which an arc-transitive group ▫$G$▫ has successive lifts, are also considered. It is proved that in such a chain, at most two projections can be split. Further, it is shown that, in the context of cubic symmetric graphs, if exactly two of them are split, then one is split-transitive and the other one is either split-sectional or split-mixed. |
---|
Ključne besede: | graph theory, graphs, cubic graphs, symmetric graphs, ▫$s$▫-regular group, regular covering projection |
---|
Leto izida: | 2008 |
---|
Št. strani: | str. 324-341 |
---|
Številčenje: | Vol. 98, no. 2 |
---|
PID: | 20.500.12556/RUP-2798 |
---|
ISSN: | 0095-8956 |
---|
UDK: | 519.17 |
---|
COBISS.SI-ID: | 2524887 |
---|
Datum objave v RUP: | 15.10.2013 |
---|
Število ogledov: | 4270 |
---|
Število prenosov: | 35 |
---|
Metapodatki: | |
---|
:
|
Kopiraj citat |
---|
| | | Skupna ocena: | (0 glasov) |
---|
Vaša ocena: | Ocenjevanje je dovoljeno samo prijavljenim uporabnikom. |
---|
Objavi na: | |
---|
Postavite miškin kazalec na naslov za izpis povzetka. Klik na naslov izpiše
podrobnosti ali sproži prenos. |